rende

Boost.Tribool

Douglas Gregor <dgregor -at- cs.indiana.edu>
Copyright © 2002-2004 Douglas Gregor

Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file L1-
CENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

LYoo (¥ ol 1 o] o RO SOPPTTRN 1
B0 £ T | TP SUPPTTTRPPN 1
S ol . Vo PP PUPPTTRPPPIN 1
Renaming the INAEterMINAE STALEccoiui i ettt ettt e et e ettt e e e et e e e et e e eeat e eeees 2
TrIDOOL INPUIOULPUL ... ettt ettt e ettt e ettt e e et b e e et e e 2
BT U (= PO P PP PPPPTII 3
AACCEPTANCE TESES ..ttt ettt ettt ettt et ettt et et et ettt e e e 3

Introduction

The 3-state boolean library contains a single class, boost: : logic: : tribool, along with support functions and operator overloads
that implement 3-state boolean logic.

Tutorial

Basic usage

The tribool class acts like the built-in bool type, but for 3-state boolean logic. The three states are true, false, and indeterm-
inate, where the first two states are equivalent to those of the C++ bool type and the last state represents an unknown boolean
value (that may be true or false, we don't know).

The tribool class supports conversion from bool values and literals along with its own indeterminate keyword:

tribool b(true);
b = false;

b = indeterminate;
tribool b2(b);

tribool supports conversions to bool for use in conditional statements. The conversion to bool will be true when the value of
the tribool is always true, and false otherwise. Consequently, the following idiom may be used to determine which of the three
states a tribool currently holds:

tribool b = some_operation();

it (b) {
// b is true

T
else if (b)) {
// b is false
T
else {
// b is indeterminate

}

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Tribool

tribool supports the 3-state logic operators ! (negation), && (AND), and | | (OR), with bool and tribool values. For instance:

tribool x = some_op(Q);
tribool y = some_other_op();

if xX&y){
// both x and y are true

}
else if (I(x & y)) {
// either x or y is false

¥
else {
// neither x nor y is false, but we don"t know that both are true

if <11 y) A

// either x or y is true
}

}

Similarly, tribool supports 3-state equality comparisons via the operators == and !=. These operators differ from "normal"
equality operators in C++ because they return a tribool, because potentially we might not know the result of a comparison (try to
compare true and indeterminate). For instance:

tribool x(true);
tribool y(indeterminate);

assert(x == x); // okay, x == X returns true
assert(x == true); // okay, can compare tribools and bools

The indeterminate keyword (representing the indeterminate tribool value) doubles as a function to check if the value of a
tribool is indeterminate, e.g.,

tribool x = try_to_do_something_tricky();
if (indeterminate(x)) {
// value of x is indeterminate

}

else {
// report success or failure of x

}

Renaming the indeterminate state

Users may introduce additional keywords for the indeterminate value in addition to the implementation-supplied indeterminate
using the BOOST_TRIBOOL_THIRD_STATE macro. For instance, the following macro instantiation (at the global scope) will introduce
the keyword maybe as a synonym for indeterminate (also residing in the boost namespace):

BOOST_TRIBOOL_THIRD_STATE(maybe)
tribool x = maybe;
if (maybe(x)) { 7* ... */ }

tribool INPUt/OUtpuUL

tribool objects may be read from and written to streams by including the boost/logic/tribool_io.hpp header in a manner
very similar to bool values. When the boolalpha flag is not set on the input/output stream, the integral values 0, 1, and 2 correspond
to tribool values false, true, and indeterminate, respectively. When boolalpha is set on the stream, arbitrary strings can
be used to represent the three values, the default being "false", "true", and "indeterminate". For instance:

rende

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Tribool

1", or "2" to get false, true, or indeterminate

tribool

X5
cin >> x; // Type "0",
cout << boolalpha << x; // Produces "false', "true', or "indeterminate"

tribool input and output is sensitive to the stream's current locale. The strings associated with false and true values are contained
in the standard std: : numpunct facet, and the string naming the indeterminate type is contained in the indeterminate_name facet.
To replace the name of the indeterminate state, you need to imbue your stream with a local containing a indeterminate_name

BOOST_TRIBOOL_THIRD_STATE(maybe)
locale test_locale(global, new indeterminate_name<char>(‘"maybe'));
If you C++ standard library implementation does not support locales, tribool input/output will still work, but you will be unable

facet, e.g.:
locale global;
cout. imbue(test_locale);
tribool x(maybe);
cout << boolalpha << x << endl; // Prints "maybe"
to customize the strings printed/parsed when boolalpha is set.
<xi:include></xi:include>

Type Description If failing...

Test all features of the

boost: :logic::tribool class.

Test the use of the BOOST_TRI-

BOOL_THIRD_STATE macro.

Acceptance tests

Test tribool input/output.

run

Test

tribool_test.cpp
run

tribool_rename_test.cpp

tribool_io_test.cpp

httpo://www.renderx.com/

render

../../libs/logic/test/tribool_test.cpp
../../libs/logic/test/tribool_rename_test.cpp
../../libs/logic/test/tribool_io_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Tribool
	Table of Contents
	Introduction
	Tutorial
	Basic usage
	Renaming the indeterminate state
	tribool input/output

	Testsuite
	Acceptance tests

