
Thread
Anthony Williams

Copyright © 2007 -8 Anthony Williams

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 2
Changes since boost 1.35 ... 3
Thread Management ... 4

Class thread .. 8
Default Constructor .. 9
Thread Constructor ... 9
Thread Constructor with arguments ... 9
Thread Destructor .. 9
Member function joinable() ... 10
Member function join() .. 10
Member function timed_join() ... 10
Member function detach() .. 10
Member function get_id() .. 11
Member function interrupt() ... 11
Static member function hardware_concurrency() ... 11
Member function native_handle() .. 11
operator== ... 11
operator!= ... 11
Static member function sleep() .. 12
Static member function yield() .. 12
Member function swap() .. 12
Non-member function swap() .. 12
Class boost::thread::id .. 13

Namespace this_thread ... 14
Non-member function get_id() .. 14
Non-member function interruption_point() .. 15
Non-member function interruption_requested() ... 15
Non-member function interruption_enabled() ... 15
Non-member function sleep() .. 15
Non-member function yield() .. 16
Class disable_interruption ... 16
Class restore_interruption ... 17
Non-member function template at_thread_exit() ... 17

Class thread_group ... 18
Constructor ... 18
Destructor ... 18
Member function create_thread() .. 18
Member function add_thread() ... 18
Member function remove_thread() .. 19
Member function join_all() ... 19
Member function interrupt_all() .. 19
Member function size() .. 19

Synchronization ... 19
Mutex Concepts ... 19

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lockable Concept ... 19
TimedLockable Concept .. 20
SharedLockable Concept .. 21
UpgradeLockable Concept .. 22

Lock Types ... 23
Class template lock_guard ... 23
Class template unique_lock ... 24
Class template shared_lock ... 27
Class template upgrade_lock ... 30
Class template upgrade_to_unique_lock ... 31
Mutex-specific class scoped_try_lock .. 32

Lock functions ... 32
Non-member function lock(Lockable1,Lockable2,...) .. 32
Non-member function lock(begin,end) ... 33
Non-member function try_lock(Lockable1,Lockable2,...) ... 33
Non-member function try_lock(begin,end) .. 33

Mutex Types .. 34
Class mutex .. 34
Typedef try_mutex ... 35
Class timed_mutex ... 35
Class recursive_mutex .. 36
Typedef recursive_try_mutex ... 36
Class recursive_timed_mutex ... 37
Class shared_mutex ... 38

Condition Variables ... 38
Class condition_variable .. 40
Class condition_variable_any ... 43
Typedef condition ... 45

One-time Initialization .. 45
Typedef once_flag ... 45
Non-member function call_once .. 46

Barriers .. 46
Class barrier .. 46

Thread Local Storage .. 47
Class thread_specific_ptr ... 48

thread_specific_ptr(); ... 48
explicit thread_specific_ptr(void (*cleanup_function)(T*)); ... 48
~thread_specific_ptr(); .. 48
T* get() const; .. 48
T* operator->() const; ... 49
T& operator*() const; ... 49
void reset(T* new_value=0); .. 49
T* release(); .. 49

Date and Time Requirements .. 49
Typedef system_time ... 50
Non-member function get_system_time() .. 50

Acknowledgments .. 50

Overview
Boost.Thread enables the use of multiple threads of execution with shared data in portable C++ code. It provides classes and functions
for managing the threads themselves, along with others for synchronizing data between the threads or providing separate copies of
data specific to individual threads.

The Boost.Thread library was originally written and designed by William E. Kempf. This version is a major rewrite designed to
closely follow the proposals presented to the C++ Standards Committee, in particular N2497, N2320, N2184, N2139, and N2094

2

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of
each class or function, or include the master thread library header:

#include <boost/thread.hpp>

which includes all the other headers in turn.

Changes since boost 1.35
The 1.36.0 release of Boost includes a few new features in the thread library:

• New generic lock() and try_lock() functions for locking multiple mutexes at once.

• Rvalue reference support for move semantics where the compilers supports it.

• A few bugs fixed and missing functions added (including the serious win32 condition variable bug).

• scoped_try_lock types are now backwards-compatible with Boost 1.34.0 and previous releases.

• Support for passing function arguments to the thread function by supplying additional arguments to the boost::thread con-
structor.

• Backwards-compatibility overloads added for timed_lock and timed_wait functions to allow use of xtime for timeouts.

Changes since boost 1.34

Almost every line of code in Boost.Thread has been changed since the 1.34 release of boost. However, most of the interface changes
have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking changes
are described below.

New Features

• Instances of boost::thread and of the various lock types are now movable.

• Threads can be interrupted at interruption points.

• Condition variables can now be used with any type that implements the Lockable concept, through the use of boost::condi-
tion_variable_any (boost::condition is a typedef to boost::condition_variable_any, provided for backwards
compatibility). boost::condition_variable is provided as an optimization, and will only work with
boost::unique_lock<boost::mutex> (boost::mutex::scoped_lock).

• Thread IDs are separated from boost::thread, so a thread can obtain it's own ID (using boost::this_thread::get_id()),
and IDs can be used as keys in associative containers, as they have the full set of comparison operators.

• Timeouts are now implemented using the Boost DateTime library, through a typedef boost::system_time for absolute timeouts,
and with support for relative timeouts in many cases. boost::xtime is supported for backwards compatibility only.

• Locks are implemented as publicly accessible templates boost::lock_guard, boost::unique_lock, boost::shared_lock,
and boost::upgrade_lock, which are templated on the type of the mutex. The Lockable concept has been extended to include
publicly available lock() and unlock() member functions, which are used by the lock types.

Breaking Changes

The list below should cover all changes to the public interface which break backwards compatibility.

• boost::try_mutex has been removed, and the functionality subsumed into boost::mutex. boost::try_mutex is left as a
typedef, but is no longer a separate class.

3

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost::recursive_try_mutex has been removed, and the functionality subsumed into boost::recursive_mutex.
boost::recursive_try_mutex is left as a typedef, but is no longer a separate class.

• boost::detail::thread::lock_ops has been removed. Code that relies on the lock_ops implementation detail will no
longer work, as this has been removed, as it is no longer necessary now that mutex types now have public lock() and unlock()
member functions.

• scoped_lock constructors with a second parameter of type bool are no longer provided. With previous boost releases,

boost::mutex::scoped_lock some_lock(some_mutex,false);

could be used to create a lock object that was associated with a mutex, but did not lock it on construction. This facility has now
been replaced with the constructor that takes a boost::defer_lock_type as the second parameter:

boost::mutex::scoped_lock some_lock(some_mutex,boost::defer_lock);

• The locked() member function of the scoped_lock types has been renamed to owns_lock().

• You can no longer obtain a boost::thread instance representing the current thread: a default-constructed boost::thread
object is not associated with any thread. The only use for such a thread object was to support the comparison operators: this
functionality has been moved to boost::thread::id.

• The broken boost::read_write_mutex has been replaced with boost::shared_mutex.

• boost::mutex is now never recursive. For Boost releases prior to 1.35 boost::mutex was recursive on Windows and not on
POSIX platforms.

• When using a boost::recursive_mutex with a call to boost::condition_variable_any::wait(), the mutex is only
unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.

Thread Management
Synopsis

The boost::thread class is responsible for launching and managing threads. Each boost::thread object represents a single
thread of execution, or Not-a-Thread, and at most one boost::thread object represents a given thread of execution: objects of
type boost::thread are not copyable.

Objects of type boost::thread are movable, however, so they can be stored in move-aware containers, and returned from functions.
This allows the details of thread creation to be wrapped in a function.

boost::thread make_thread();

void f()
{
 boost::thread some_thread=make_thread();
 some_thread.join();
}

[Note: On compilers that support rvalue references, boost::thread provides a proper move constructor and move-assignment
operator, and therefore meets the C++0x MoveConstructible and MoveAssignable concepts. With such compilers, boost::thread
can therefore be used with containers that support those concepts.

For other compilers, move support is provided with a move emulation layer, so containers must explicitly detect that move emulation
layer. See <boost/thread/detail/move.hpp> for details.]

4

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Launching threads

A new thread is launched by passing an object of a callable type that can be invoked with no parameters to the constructor. The object
is then copied into internal storage, and invoked on the newly-created thread of execution. If the object must not (or cannot) be
copied, then boost::ref can be used to pass in a reference to the function object. In this case, the user of Boost.Thread must ensure
that the referred-to object outlives the newly-created thread of execution.

struct callable
{

void operator()();
};

boost::thread copies_are_safe()
{
 callable x;

return boost::thread(x);
} // x is destroyed, but the newly-created thread has a copy, so this is OK

boost::thread oops()
{
 callable x;

return boost::thread(boost::ref(x));
} // x is destroyed, but the newly-created thread still has a reference
// this leads to undefined behaviour

If you wish to construct an instance of boost::thread with a function or callable object that requires arguments to be supplied,
this can be done by passing additional arguments to the boost::thread constructor:

void find_the_question(int the_answer);

boost::thread deep_thought_2(find_the_question,42);

The arguments are copied into the internal thread structure: if a reference is required, use boost::ref, just as for references to
callable functions.

There is an unspecified limit on the number of additional arguments that can be passed.

Exceptions in thread functions

If the function or callable object passed to the boost::thread constructor propagates an exception when invoked that is not of
type boost::thread_interrupted, std::terminate() is called.

Joining and detaching

When the boost::thread object that represents a thread of execution is destroyed the thread becomes detached. Once a thread is
detached, it will continue executing until the invocation of the function or callable object supplied on construction has completed,
or the program is terminated. A thread can also be detached by explicitly invoking the detach() member function on the
boost::thread object. In this case, the boost::thread object ceases to represent the now-detached thread, and instead represents
Not-a-Thread.

In order to wait for a thread of execution to finish, the join() or timed_join() member functions of the boost::thread object
must be used. join() will block the calling thread until the thread represented by the boost::thread object has completed. If the
thread of execution represented by the boost::thread object has already completed, or the boost::thread object represents
Not-a-Thread, then join() returns immediately. timed_join() is similar, except that a call to timed_join() will also return if
the thread being waited for does not complete when the specified time has elapsed.

5

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Interruption

A running thread can be interrupted by invoking the interrupt() member function of the corresponding boost::thread object.
When the interrupted thread next executes one of the specified interruption points (or if it is currently blocked whilst executing one)
with interruption enabled, then a boost::thread_interrupted exception will be thrown in the interrupted thread. If not caught,
this will cause the execution of the interrupted thread to terminate. As with any other exception, the stack will be unwound, and de-
structors for objects of automatic storage duration will be executed.

If a thread wishes to avoid being interrupted, it can create an instance of boost::this_thread::disable_interruption.
Objects of this class disable interruption for the thread that created them on construction, and restore the interruption state to whatever
it was before on destruction:

void f()
{

// interruption enabled here
{

 boost::this_thread::disable_interruption di;
// interruption disabled
{

 boost::this_thread::disable_interruption di2;
// interruption still disabled

} // di2 destroyed, interruption state restored
// interruption still disabled

} // di destroyed, interruption state restored
// interruption now enabled

}

The effects of an instance of boost::this_thread::disable_interruption can be temporarily reversed by constructing an
instance of boost::this_thread::restore_interruption, passing in the boost::this_thread::disable_interruption
object in question. This will restore the interruption state to what it was when the boost::this_thread::disable_interruption
object was constructed, and then disable interruption again when the boost::this_thread::restore_interruption object
is destroyed.

void g()
{

// interruption enabled here
{

 boost::this_thread::disable_interruption di;
// interruption disabled
{

 boost::this_thread::restore_interruption ri(di);
// interruption now enabled

} // ri destroyed, interruption disable again
} // di destroyed, interruption state restored
// interruption now enabled

}

At any point, the interruption state for the current thread can be queried by calling boost::this_thread::interruption_en-
abled().

Predefined Interruption Points

The following functions are interruption points, which will throw boost::thread_interrupted if interruption is enabled for
the current thread, and interruption is requested for the current thread:

• boost::thread::join()

• boost::thread::timed_join()

6

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost::condition_variable::wait()

• boost::condition_variable::timed_wait()

• boost::condition_variable_any::wait()

• boost::condition_variable_any::timed_wait()

• boost::thread::sleep()

• boost::this_thread::sleep()

• boost::this_thread::interruption_point()

Thread IDs

Objects of class boost::thread::id can be used to identify threads. Each running thread of execution has a unique ID obtainable
from the corresponding boost::thread by calling the get_id() member function, or by calling
boost::this_thread::get_id() from within the thread. Objects of class boost::thread::id can be copied, and used as
keys in associative containers: the full range of comparison operators is provided. Thread IDs can also be written to an output stream
using the stream insertion operator, though the output format is unspecified.

Each instance of boost::thread::id either refers to some thread, or Not-a-Thread. Instances that refer to Not-a-Thread compare
equal to each other, but not equal to any instances that refer to an actual thread of execution. The comparison operators on
boost::thread::id yield a total order for every non-equal thread ID.

7

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class thread

#include <boost/thread/thread.hpp>

class thread
{
public:
 thread();

~thread();

template <class F>
explicit thread(F f);

template <class F,class A1,class A2,...>
 thread(F f,A1 a1,A2 a2,...);

template <class F>
 thread(detail::thread_move_t<F> f);

// move support
 thread(detail::thread_move_t<thread> x);
 thread& operator=(detail::thread_move_t<thread> x);

operator detail::thread_move_t<thread>();
 detail::thread_move_t<thread> move();

void swap(thread& x);

class id;
 id get_id() const;

bool joinable() const;
void join();
bool timed_join(const system_time& wait_until);

template<typename TimeDuration>
bool timed_join(TimeDuration const& rel_time);

void detach();

static unsigned hardware_concurrency();

typedef platform-specific-type native_handle_type;
 native_handle_type native_handle();

void interrupt();
bool interruption_requested() const;

// backwards compatibility
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;

8

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static void yield();
static void sleep(const system_time& xt);

};

void swap(thread& lhs,thread& rhs);

Default Constructor

thread();

Effects: Constructs a boost::thread instance that refers to Not-a-Thread.

Throws: Nothing

Thread Constructor

template<typename Callable>
thread(Callable func);

Preconditions: Callable must by copyable.

Effects: func is copied into storage managed internally by the thread library, and that copy is invoked on a newly-
created thread of execution. If this invocation results in an exception being propagated into the internals of
the thread library that is not of type boost::thread_interrupted, then std::terminate() will be
called.

Postconditions: *this refers to the newly created thread of execution.

Throws: boost::thread_resource_error if an error occurs.

Thread Constructor with arguments

template <class F,class A1,class A2,...>
thread(F f,A1 a1,A2 a2,...);

Preconditions: F and each An must by copyable or movable.

Effects: As if thread(boost::bind(f,a1,a2,...)). Consequently, f and each an are copied into internal
storage for access by the new thread.

Postconditions: *this refers to the newly created thread of execution.

Throws: boost::thread_resource_error if an error occurs.

Note: Currently up to nine additional arguments a1 to a9 can be specified in addition to the function f.

Thread Destructor

~thread();

Effects: If *this has an associated thread of execution, calls detach(). Destroys *this.

Throws: Nothing.

9

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function joinable()

bool joinable() const;

Returns: true if *this refers to a thread of execution, false otherwise.

Throws: Nothing

Member function join()

void join();

Preconditions: this->get_id()!=boost::this_thread::get_id()

Effects: If *this refers to a thread of execution, waits for that thread of execution to complete.

Postconditions: If *this refers to a thread of execution on entry, that thread of execution has completed. *this no longer
refers to any thread of execution.

Throws: boost::thread_interrupted if the current thread of execution is interrupted.

Notes: join() is one of the predefined interruption points.

Member function timed_join()

bool timed_join(const system_time& wait_until);

template<typename TimeDuration>
bool timed_join(TimeDuration const& rel_time);

Preconditions: this->get_id()!=boost::this_thread::get_id()

Effects: If *this refers to a thread of execution, waits for that thread of execution to complete, the time wait_until
has been reach or the specified duration rel_time has elapsed. If *this doesn't refer to a thread of execu-
tion, returns immediately.

Returns: true if *this refers to a thread of execution on entry, and that thread of execution has completed before
the call times out, false otherwise.

Postconditions: If *this refers to a thread of execution on entry, and timed_join returns true, that thread of execution
has completed, and *this no longer refers to any thread of execution. If this call to timed_join returns
false, *this is unchanged.

Throws: boost::thread_interrupted if the current thread of execution is interrupted.

Notes: timed_join() is one of the predefined interruption points.

Member function detach()

void detach();

Effects: If *this refers to a thread of execution, that thread of execution becomes detached, and no longer has an
associated boost::thread object.

Postconditions: *this no longer refers to any thread of execution.

10

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing

Member function get_id()

thread::id get_id() const;

Returns: If *this refers to a thread of execution, an instance of boost::thread::id that represents that thread. Otherwise
returns a default-constructed boost::thread::id.

Throws: Nothing

Member function interrupt()

void interrupt();

Effects: If *this refers to a thread of execution, request that the thread will be interrupted the next time it enters one of the
predefined interruption points with interruption enabled, or if it is currently blocked in a call to one of the predefined
interruption points with interruption enabled .

Throws: Nothing

Static member function hardware_concurrency()

unsigned hardware_concurrency();

Returns: The number of hardware threads available on the current system (e.g. number of CPUs or cores or hyperthreading
units), or 0 if this information is not available.

Throws: Nothing

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

operator==

bool operator==(const thread& other) const;

Returns: get_id()==other.get_id()

operator!=

bool operator!=(const thread& other) const;

Returns: get_id()!=other.get_id()

11

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Static member function sleep()

void sleep(system_time const& abs_time);

Effects: Suspends the current thread until the specified time has been reached.

Throws: boost::thread_interrupted if the current thread of execution is interrupted.

Notes: sleep() is one of the predefined interruption points.

Static member function yield()

void yield();

Effects: See boost::this_thread::yield().

Member function swap()

void swap(thread& other);

Effects: Exchanges the threads of execution associated with *this and other, so *this is associated with the
thread of execution associated with other prior to the call, and vice-versa.

Postconditions: this->get_id() returns the same value as other.get_id() prior to the call. other.get_id() returns
the same value as this->get_id() prior to the call.

Throws: Nothing.

Non-member function swap()

#include <boost/thread/thread.hpp>

void swap(thread& lhs,thread& rhs);

Effects: lhs.swap(rhs).

12

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class boost::thread::id

#include <boost/thread/thread.hpp>

class thread::id
{
public:
 id();

bool operator==(const id& y) const;
bool operator!=(const id& y) const;
bool operator<(const id& y) const;
bool operator>(const id& y) const;
bool operator<=(const id& y) const;
bool operator>=(const id& y) const;

template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x);

};

Default constructor

id();

Effects: Constructs a boost::thread::id instance that represents Not-a-Thread.

Throws: Nothing

operator==

bool operator==(const id& y) const;

Returns: true if *this and y both represent the same thread of execution, or both represent Not-a-Thread, false otherwise.

Throws: Nothing

operator!=

bool operator!=(const id& y) const;

Returns: true if *this and y represent different threads of execution, or one represents a thread of execution, and the other
represent Not-a-Thread, false otherwise.

Throws: Nothing

operator<

bool operator<(const id& y) const;

Returns: true if *this!=y is true and the implementation-defined total order of boost::thread::id values places *this
before y, false otherwise.

Throws: Nothing

13

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note: A boost::thread::id instance representing Not-a-Thread will always compare less than an instance representing
a thread of execution.

operator>

bool operator>(const id& y) const;

Returns: y<*this

Throws: Nothing

operator>=

bool operator<=(const id& y) const;

Returns: !(y<*this)

Throws: Nothing

operator>=

bool operator>=(const id& y) const;

Returns: !(*this<y)

Throws: Nothing

Friend operator<<

template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x);

Effects: Writes a representation of the boost::thread::id instance x to the stream os, such that the representation of two
instances of boost::thread::id a and b is the same if a==b, and different if a!=b.

Returns: os

Namespace this_thread

Non-member function get_id()

#include <boost/thread/thread.hpp>

namespace this_thread
{
 thread::id get_id();
}

Returns: An instance of boost::thread::id that represents that currently executing thread.

Throws: boost::thread_resource_error if an error occurs.

14

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function interruption_point()

#include <boost/thread/thread.hpp>

namespace this_thread
{

void interruption_point();
}

Effects: Check to see if the current thread has been interrupted.

Throws: boost::thread_interrupted if boost::this_thread::interruption_enabled() and
boost::this_thread::interruption_requested() both return true.

Non-member function interruption_requested()

#include <boost/thread/thread.hpp>

namespace this_thread
{

bool interruption_requested();
}

Returns: true if interruption has been requested for the current thread, false otherwise.

Throws: Nothing.

Non-member function interruption_enabled()

#include <boost/thread/thread.hpp>

namespace this_thread
{

bool interruption_enabled();
}

Returns: true if interruption has been enabled for the current thread, false otherwise.

Throws: Nothing.

Non-member function sleep()

#include <boost/thread/thread.hpp>

namespace this_thread
{

template<typename TimeDuration>
void sleep(TimeDuration const& rel_time);

}

Effects: Suspends the current thread until the specified time has elapsed.

Throws: boost::thread_interrupted if the current thread of execution is interrupted.

Notes: sleep() is one of the predefined interruption points.

15

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function yield()

#include <boost/thread/thread.hpp>

namespace this_thread
{

void yield();
}

Effects: Gives up the remainder of the current thread's time slice, to allow other threads to run.

Throws: Nothing.

Class disable_interruption

#include <boost/thread/thread.hpp>

namespace this_thread
{

class disable_interruption
{
public:

 disable_interruption();
~disable_interruption();

};
}

boost::this_thread::disable_interruption disables interruption for the current thread on construction, and restores the
prior interruption state on destruction. Instances of disable_interruption cannot be copied or moved.

Constructor

disable_interruption();

Effects: Stores the current state of boost::this_thread::interruption_enabled() and disables interruption
for the current thread.

Postconditions: boost::this_thread::interruption_enabled() returns false for the current thread.

Throws: Nothing.

Destructor

~disable_interruption();

Preconditions: Must be called from the same thread from which *this was constructed.

Effects: Restores the current state of boost::this_thread::interruption_enabled() for the current thread
to that prior to the construction of *this.

Postconditions: boost::this_thread::interruption_enabled() for the current thread returns the value stored in
the constructor of *this.

Throws: Nothing.

16

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class restore_interruption

#include <boost/thread/thread.hpp>

namespace this_thread
{

class restore_interruption
{
public:

explicit restore_interruption(disable_interruption& disabler);
~restore_interruption();

};
}

On construction of an instance of boost::this_thread::restore_interruption, the interruption state for the current thread
is restored to the interruption state stored by the constructor of the supplied instance of boost::this_thread::disable_inter-
ruption. When the instance is destroyed, interruption is again disabled. Instances of restore_interruption cannot be copied
or moved.

Constructor

explicit restore_interruption(disable_interruption& disabler);

Preconditions: Must be called from the same thread from which disabler was constructed.

Effects: Restores the current state of boost::this_thread::interruption_enabled() for the current thread
to that prior to the construction of disabler.

Postconditions: boost::this_thread::interruption_enabled() for the current thread returns the value stored in
the constructor of disabler.

Throws: Nothing.

Destructor

~restore_interruption();

Preconditions: Must be called from the same thread from which *this was constructed.

Effects: Disables interruption for the current thread.

Postconditions: boost::this_thread::interruption_enabled() for the current thread returns false.

Throws: Nothing.

Non-member function template at_thread_exit()

#include <boost/thread/thread.hpp>

template<typename Callable>
void at_thread_exit(Callable func);

Effects: A copy of func is placed in thread-specific storage. This copy is invoked when the current thread exits
(even if the thread has been interrupted).

Postconditions: A copy of func has been saved for invocation on thread exit.

17

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: std::bad_alloc if memory cannot be allocated for the copy of the function, boost::thread_re-
source_error if any other error occurs within the thread library. Any exception thrown whilst copying
func into internal storage.

Class thread_group

#include <boost/thread/thread.hpp>

class thread_group:
private noncopyable

{
public:
 thread_group();

~thread_group();

template<typename F>
 thread* create_thread(F threadfunc);

void add_thread(thread* thrd);
void remove_thread(thread* thrd);
void join_all();
void interrupt_all();
int size() const;

};

thread_group provides for a collection of threads that are related in some fashion. New threads can be added to the group with
add_thread and create_thread member functions. thread_group is not copyable or movable.

Constructor

thread_group();

Effects: Create a new thread group with no threads.

Destructor

~thread_group();

Effects: Destroy *this and delete all boost::thread objects in the group.

Member function create_thread()

template<typename F>
thread* create_thread(F threadfunc);

Effects: Create a new boost::thread object as-if by new thread(threadfunc) and add it to the group.

Postcondition: this->size() is increased by one, the new thread is running.

Returns: A pointer to the new boost::thread object.

Member function add_thread()

void add_thread(thread* thrd);

Precondition: The expression delete thrd is well-formed and will not result in undefined behaviour.

18

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Take ownership of the boost::thread object pointed to by thrd and add it to the group.

Postcondition: this->size() is increased by one.

Member function remove_thread()

void remove_thread(thread* thrd);

Effects: If thrd is a member of the group, remove it without calling delete.

Postcondition: If thrd was a member of the group, this->size() is decreased by one.

Member function join_all()

void join_all();

Effects: Call join() on each boost::thread object in the group.

Postcondition: Every thread in the group has terminated.

Note: Since join() is one of the predefined interruption points, join_all() is also an interruption point.

Member function interrupt_all()

void interrupt_all();

Effects: Call interrupt() on each boost::thread object in the group.

Member function size()

int size();

Returns: The number of threads in the group.

Throws: Nothing.

Synchronization

Mutex Concepts
A mutex object facilitates protection against data races and allows thread-safe synchronization of data between threads. A thread
obtains ownership of a mutex object by calling one of the lock functions and relinquishes ownership by calling the corresponding
unlock function. Mutexes may be either recursive or non-recursive, and may grant simultaneous ownership to one or many threads.
Boost.Thread supplies recursive and non-recursive mutexes with exclusive ownership semantics, along with a shared ownership
(multiple-reader / single-writer) mutex.

Boost.Thread supports four basic concepts for lockable objects: Lockable, TimedLockable, SharedLockable and Upgrade-
Lockable. Each mutex type implements one or more of these concepts, as do the various lock types.

Lockable Concept

The Lockable concept models exclusive ownership. A type that implements the Lockable concept shall provide the following
member functions:

19

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• void lock();

• bool try_lock();

• void unlock();

Lock ownership acquired through a call to lock() or try_lock() must be released through a call to unlock().

void lock()

Effects: The current thread blocks until ownership can be obtained for the current thread.

Postcondition: The current thread owns *this.

Throws: boost::thread_resource_error if an error occurs.

bool try_lock()

Effects: Attempt to obtain ownership for the current thread without blocking.

Returns: true if ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread owns the *this.

Throws: boost::thread_resource_error if an error occurs.

void unlock()

Precondition: The current thread owns *this.

Effects: Releases ownership by the current thread.

Postcondition: The current thread no longer owns *this.

Throws: Nothing

TimedLockable Concept

The TimedLockable concept refines the Lockable concept to add support for timeouts when trying to acquire the lock.

A type that implements the TimedLockable concept shall meet the requirements of the Lockable concept. In addition, the following
member functions must be provided:

• bool timed_lock(boost::system_time const& abs_time);

• template<typename DurationType> bool timed_lock(DurationType const& rel_time);

Lock ownership acquired through a call to timed_lock() must be released through a call to unlock().

bool timed_lock(boost::system_time const& abs_time)

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time is reached. If the specified time has already passed, behaves as try_lock().

Returns: true if ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread owns *this.

Throws: boost::thread_resource_error if an error occurs.

20

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename DurationType> bool timed_lock(DurationType const& rel_time)

Effects: As-if timed_lock(boost::get_system_time()+rel_time).

SharedLockable Concept

The SharedLockable concept is a refinement of the TimedLockable concept that allows for shared ownership as well as exclusive
ownership. This is the standard multiple-reader / single-write model: at most one thread can have exclusive ownership, and if any
thread does have exclusive ownership, no other threads can have shared or exclusive ownership. Alternatively, many threads may
have shared ownership.

For a type to implement the SharedLockable concept, as well as meeting the requirements of the TimedLockable concept, it
must also provide the following member functions:

• void lock_shared();

• bool try_lock_shared();

• bool unlock_shared();

• bool timed_lock_shared(boost::system_time const& abs_time);

Lock ownership acquired through a call to lock_shared(), try_lock_shared() or timed_lock_shared() must be released
through a call to unlock_shared().

void lock_shared()

Effects: The current thread blocks until shared ownership can be obtained for the current thread.

Postcondition: The current thread has shared ownership of *this.

Throws: boost::thread_resource_error if an error occurs.

bool try_lock_shared()

Effects: Attempt to obtain shared ownership for the current thread without blocking.

Returns: true if shared ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has shared ownership of *this.

Throws: boost::thread_resource_error if an error occurs.

bool timed_lock_shared(boost::system_time const& abs_time)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behaves as try_lock_shared().

Returns: true if shared ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has shared ownership of *this.

Throws: boost::thread_resource_error if an error occurs.

void unlock_shared()

Precondition: The current thread has shared ownership of *this.

Effects: Releases shared ownership of *this by the current thread.

21

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postcondition: The current thread no longer has shared ownership of *this.

Throws: Nothing

UpgradeLockable Concept

The UpgradeLockable concept is a refinement of the SharedLockable concept that allows for upgradable ownership as well as
shared ownership and exclusive ownership. This is an extension to the multiple-reader / single-write model provided by the
SharedLockable concept: a single thread may have upgradable ownership at the same time as others have shared ownership. The
thread with upgradable ownership may at any time attempt to upgrade that ownership to exclusive ownership. If no other threads
have shared ownership, the upgrade is completed immediately, and the thread now has exclusive ownership, which must be relinquished
by a call to unlock(), just as if it had been acquired by a call to lock().

If a thread with upgradable ownership tries to upgrade whilst other threads have shared ownership, the attempt will fail and the
thread will block until exclusive ownership can be acquired.

Ownership can also be downgraded as well as upgraded: exclusive ownership of an implementation of the UpgradeLockable
concept can be downgraded to upgradable ownership or shared ownership, and upgradable ownership can be downgraded to plain
shared ownership.

For a type to implement the UpgradeLockable concept, as well as meeting the requirements of the SharedLockable concept, it
must also provide the following member functions:

• void lock_upgrade();

• bool unlock_upgrade();

• void unlock_upgrade_and_lock();

• void unlock_and_lock_upgrade();

• void unlock_upgrade_and_lock_shared();

Lock ownership acquired through a call to lock_upgrade() must be released through a call to unlock_upgrade(). If the own-
ership type is changed through a call to one of the unlock_xxx_and_lock_yyy() functions, ownership must be released through
a call to the unlock function corresponding to the new level of ownership.

void lock_upgrade()

Effects: The current thread blocks until upgrade ownership can be obtained for the current thread.

Postcondition: The current thread has upgrade ownership of *this.

Throws: boost::thread_resource_error if an error occurs.

void unlock_upgrade()

Precondition: The current thread has upgrade ownership of *this.

Effects: Releases upgrade ownership of *this by the current thread.

Postcondition: The current thread no longer has upgrade ownership of *this.

Throws: Nothing

void unlock_upgrade_and_lock()

Precondition: The current thread has upgrade ownership of *this.

22

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Atomically releases upgrade ownership of *this by the current thread and acquires exclusive ownership of
*this. If any other threads have shared ownership, blocks until exclusive ownership can be acquired.

Postcondition: The current thread has exclusive ownership of *this.

Throws: Nothing

void unlock_upgrade_and_lock_shared()

Precondition: The current thread has upgrade ownership of *this.

Effects: Atomically releases upgrade ownership of *this by the current thread and acquires shared ownership of
*this without blocking.

Postcondition: The current thread has shared ownership of *this.

Throws: Nothing

void unlock_and_lock_upgrade()

Precondition: The current thread has exclusive ownership of *this.

Effects: Atomically releases exclusive ownership of *this by the current thread and acquires upgrade ownership of
*this without blocking.

Postcondition: The current thread has upgrade ownership of *this.

Throws: Nothing

Lock Types

Class template lock_guard

#include <boost/thread/locks.hpp>

template<typename Lockable>
class lock_guard
{
public:

explicit lock_guard(Lockable& m_);
 lock_guard(Lockable& m_,boost::adopt_lock_t);

~lock_guard();
};

boost::lock_guard is very simple: on construction it acquires ownership of the implementation of the Lockable concept supplied
as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking of a Lockable
object, to facilitate exception-safe locking and unlocking. In addition, the lock_guard(Lockable & m,boost::adopt_lock_t)
constructor allows the boost::lock_guard object to take ownership of a lock already held by the current thread.

lock_guard(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock().

Throws: Any exception thrown by the call to m.lock().

lock_guard(Lockable & m,boost::adopt_lock_t)

Precondition: The current thread owns a lock on m equivalent to one obtained by a call to m.lock().

23

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Throws: Nothing.

~lock_guard()

Effects: Invokes m.unlock() on the Lockable object passed to the constructor.

Throws: Nothing.

Class template unique_lock

#include <boost/thread/locks.hpp>

template<typename Lockable>
class unique_lock
{
public:
 unique_lock();

explicit unique_lock(Lockable& m_);
 unique_lock(Lockable& m_,adopt_lock_t);
 unique_lock(Lockable& m_,defer_lock_t);
 unique_lock(Lockable& m_,try_to_lock_t);
 unique_lock(Lockable& m_,system_time const& target_time);

~unique_lock();

 unique_lock(detail::thread_move_t<unique_lock<Lockable> > other);
 unique_lock(detail::thread_move_t<upgrade_lock<Lockable> > other);

operator detail::thread_move_t<unique_lock<Lockable> >();
 detail::thread_move_t<unique_lock<Lockable> > move();
 unique_lock& operator=(detail::thread_move_t<unique_lock<Lockable> > other);
 unique_lock& operator=(detail::thread_move_t<upgrade_lock<Lockable> > other);

void swap(unique_lock& other);
void swap(detail::thread_move_t<unique_lock<Lockable> > other);

void lock();
bool try_lock();

template<typename TimeDuration>
bool timed_lock(TimeDuration const& relative_time);
bool timed_lock(::boost::system_time const& absolute_time);

void unlock();

bool owns_lock() const;
operator unspecified-bool-type() const;
bool operator!() const;

 Lockable* mutex() const;
 Lockable* release();
};

boost::unique_lock is more complex than boost::lock_guard: not only does it provide for RAII-style locking, it also allows
for deferring acquiring the lock until the lock() member function is called explicitly, or trying to acquire the lock in a non-blocking
fashion, or with a timeout. Consequently, unlock() is only called in the destructor if the lock object has locked the Lockable object,
or otherwise adopted a lock on the Lockable object.

24

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specializations of boost::unique_lock model the TimedLockable concept if the supplied Lockable type itself models
TimedLockable concept (e.g. boost::unique_lock<boost::timed_mutex>), or the Lockable concept otherwise (e.g.
boost::unique_lock<boost::mutex>).

An instance of boost::unique_lock is said to own the lock state of a Lockable m if mutex() returns a pointer to m and
owns_lock() returns true. If an object that owns the lock state of a Lockable object is destroyed, then the destructor will invoke
mutex()->unlock().

The member functions of boost::unique_lock are not thread-safe. In particular, boost::unique_lock is intended to model
the ownership of a Lockable object by a particular thread, and the member functions that release ownership of the lock state (in-
cluding the destructor) must be called by the same thread that acquired ownership of the lock state.

unique_lock()

Effects: Creates a lock object with no associated mutex.

Postcondition: owns_lock() returns false. mutex() returns NULL.

Throws: Nothing.

unique_lock(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock().

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Any exception thrown by the call to m.lock().

unique_lock(Lockable & m,boost::adopt_lock_t)

Precondition: The current thread owns an exclusive lock on m.

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Nothing.

unique_lock(Lockable & m,boost::defer_lock_t)

Effects: Stores a reference to m.

Postcondition: owns_lock() returns false. mutex() returns &m.

Throws: Nothing.

unique_lock(Lockable & m,boost::try_to_lock_t)

Effects: Stores a reference to m. Invokes m.try_lock(), and takes ownership of the lock state if the call returns
true.

Postcondition: mutex() returns &m. If the call to try_lock() returned true, then owns_lock() returns true, otherwise
owns_lock() returns false.

Throws: Nothing.

unique_lock(Lockable & m,boost::system_time const& abs_time)

Effects: Stores a reference to m. Invokes m.timed_lock(abs_time), and takes ownership of the lock state if the
call returns true.

25

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postcondition: mutex() returns &m. If the call to timed_lock() returned true, then owns_lock() returns true, otherwise
owns_lock() returns false.

Throws: Any exceptions thrown by the call to m.timed_lock(abs_time).

~unique_lock()

Effects: Invokes mutex()-> unlock() if owns_lock() returns true.

Throws: Nothing.

bool owns_lock() const

Returns: true if the *this owns the lock on the Lockable object associated with *this.

Throws: Nothing.

Lockable* mutex() const

Returns: A pointer to the Lockable object associated with *this, or NULL if there is no such object.

Throws: Nothing.

operator unspecified-bool-type() const

Returns: If owns_lock() would return true, a value that evaluates to true in boolean contexts, otherwise a value that eval-
uates to false in boolean contexts.

Throws: Nothing.

bool operator!() const

Returns: ! owns_lock().

Throws: Nothing.

Lockable* release()

Effects: The association between *this and the Lockable object is removed, without affecting the lock state of the
Lockable object. If owns_lock() would have returned true, it is the responsibility of the calling code to
ensure that the Lockable is correctly unlocked.

Returns: A pointer to the Lockable object associated with *this at the point of the call, or NULL if there is no such
object.

Throws: Nothing.

Postcondition: *this is no longer associated with any Lockable object. mutex() returns NULL and owns_lock() returns
false.

26

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template shared_lock

#include <boost/thread/locks.hpp>

template<typename Lockable>
class shared_lock
{
public:
 shared_lock();

explicit shared_lock(Lockable& m_);
 shared_lock(Lockable& m_,adopt_lock_t);
 shared_lock(Lockable& m_,defer_lock_t);
 shared_lock(Lockable& m_,try_to_lock_t);
 shared_lock(Lockable& m_,system_time const& target_time);
 shared_lock(detail::thread_move_t<shared_lock<Lockable> > other);
 shared_lock(detail::thread_move_t<unique_lock<Lockable> > other);
 shared_lock(detail::thread_move_t<upgrade_lock<Lockable> > other);

~shared_lock();

operator detail::thread_move_t<shared_lock<Lockable> >();
 detail::thread_move_t<shared_lock<Lockable> > move();

 shared_lock& operator=(detail::thread_move_t<shared_lock<Lockable> > other);
 shared_lock& operator=(detail::thread_move_t<unique_lock<Lockable> > other);
 shared_lock& operator=(detail::thread_move_t<upgrade_lock<Lockable> > other);

void swap(shared_lock& other);

void lock();
bool try_lock();
bool timed_lock(boost::system_time const& target_time);
void unlock();

operator unspecified-bool-type() const;
bool operator!() const;
bool owns_lock() const;

};

Like boost::unique_lock, boost::shared_lock models the Lockable concept, but rather than acquiring unique ownership
of the supplied Lockable object, locking an instance of boost::shared_lock acquires shared ownership.

Like boost::unique_lock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
the lock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unlock() is only called in the destructor if the lock object has locked the Lockable object, or otherwise adopted a lock
on the Lockable object.

An instance of boost::shared_lock is said to own the lock state of a Lockable m if mutex() returns a pointer to m and
owns_lock() returns true. If an object that owns the lock state of a Lockable object is destroyed, then the destructor will invoke
mutex()->unlock_shared().

The member functions of boost::shared_lock are not thread-safe. In particular, boost::shared_lock is intended to model
the shared ownership of a Lockable object by a particular thread, and the member functions that release ownership of the lock state
(including the destructor) must be called by the same thread that acquired ownership of the lock state.

shared_lock()

Effects: Creates a lock object with no associated mutex.

Postcondition: owns_lock() returns false. mutex() returns NULL.

Throws: Nothing.

27

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shared_lock(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock_shared().

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Any exception thrown by the call to m.lock_shared().

shared_lock(Lockable & m,boost::adopt_lock_t)

Precondition: The current thread owns an exclusive lock on m.

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Nothing.

shared_lock(Lockable & m,boost::defer_lock_t)

Effects: Stores a reference to m.

Postcondition: owns_lock() returns false. mutex() returns &m.

Throws: Nothing.

shared_lock(Lockable & m,boost::try_to_lock_t)

Effects: Stores a reference to m. Invokes m.try_lock_shared(), and takes ownership of the lock state if the call
returns true.

Postcondition: mutex() returns &m. If the call to try_lock_shared() returned true, then owns_lock() returns true,
otherwise owns_lock() returns false.

Throws: Nothing.

shared_lock(Lockable & m,boost::system_time const& abs_time)

Effects: Stores a reference to m. Invokes m.timed_lock(abs_time), and takes ownership of the lock state if the
call returns true.

Postcondition: mutex() returns &m. If the call to timed_lock_shared() returned true, then owns_lock() returns true,
otherwise owns_lock() returns false.

Throws: Any exceptions thrown by the call to m.timed_lock(abs_time).

~shared_lock()

Effects: Invokes mutex()-> unlock_shared() if owns_lock() returns true.

Throws: Nothing.

bool owns_lock() const

Returns: true if the *this owns the lock on the Lockable object associated with *this.

Throws: Nothing.

28

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lockable* mutex() const

Returns: A pointer to the Lockable object associated with *this, or NULL if there is no such object.

Throws: Nothing.

operator unspecified-bool-type() const

Returns: If owns_lock() would return true, a value that evaluates to true in boolean contexts, otherwise a value that eval-
uates to false in boolean contexts.

Throws: Nothing.

bool operator!() const

Returns: ! owns_lock().

Throws: Nothing.

Lockable* release()

Effects: The association between *this and the Lockable object is removed, without affecting the lock state of the
Lockable object. If owns_lock() would have returned true, it is the responsibility of the calling code to
ensure that the Lockable is correctly unlocked.

Returns: A pointer to the Lockable object associated with *this at the point of the call, or NULL if there is no such
object.

Throws: Nothing.

Postcondition: *this is no longer associated with any Lockable object. mutex() returns NULL and owns_lock() returns
false.

29

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template upgrade_lock

#include <boost/thread/locks.hpp>

template<typename Lockable>
class upgrade_lock
{
public:

explicit upgrade_lock(Lockable& m_);

 upgrade_lock(detail::thread_move_t<upgrade_lock<Lockable> > other);
 upgrade_lock(detail::thread_move_t<unique_lock<Lockable> > other);

~upgrade_lock();

operator detail::thread_move_t<upgrade_lock<Lockable> >();
 detail::thread_move_t<upgrade_lock<Lockable> > move();

 upgrade_lock& operator=(detail::thread_move_t<upgrade_lock<Lockable> > other);
 upgrade_lock& operator=(detail::thread_move_t<unique_lock<Lockable> > other);

void swap(upgrade_lock& other);

void lock();
void unlock();

operator unspecified-bool-type() const;
bool operator!() const;
bool owns_lock() const;

};

Like boost::unique_lock, boost::upgrade_lock models the Lockable concept, but rather than acquiring unique ownership
of the supplied Lockable object, locking an instance of boost::upgrade_lock acquires upgrade ownership.

Like boost::unique_lock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
the lock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unlock() is only called in the destructor if the lock object has locked the Lockable object, or otherwise adopted a lock
on the Lockable object.

An instance of boost::upgrade_lock is said to own the lock state of a Lockable m if mutex() returns a pointer to m and
owns_lock() returns true. If an object that owns the lock state of a Lockable object is destroyed, then the destructor will invoke
mutex()->unlock_upgrade().

The member functions of boost::upgrade_lock are not thread-safe. In particular, boost::upgrade_lock is intended to model
the upgrade ownership of a Lockable object by a particular thread, and the member functions that release ownership of the lock
state (including the destructor) must be called by the same thread that acquired ownership of the lock state.

30

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template upgrade_to_unique_lock

#include <boost/thread/locks.hpp>

template <class Lockable>
class upgrade_to_unique_lock
{
public:

explicit upgrade_to_unique_lock(upgrade_lock<Lockable>& m_);

~upgrade_to_unique_lock();

 upgrade_to_unique_lock(detail::thread_move_t<upgrade_to_unique_lock<Lockable> > other);
 upgrade_to_unique_lock& operator=(detail::thread_move_t<upgrade_to_unique_lock<Lockable> > oth↵
er);

void swap(upgrade_to_unique_lock& other);

operator unspecified-bool-type() const;
bool operator!() const;
bool owns_lock() const;

};

boost::upgrade_to_unique_lock allows for a temporary upgrade of an boost::upgrade_lock to exclusive ownership.
When constructed with a reference to an instance of boost::upgrade_lock, if that instance has upgrade ownership on some
Lockable object, that ownership is upgraded to exclusive ownership. When the boost::upgrade_to_unique_lock instance is
destroyed, the ownership of the Lockable is downgraded back to upgrade ownership.

31

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mutex-specific class scoped_try_lock

class MutexType::scoped_try_lock
{
private:
 MutexType::scoped_try_lock(MutexType::scoped_try_lock<MutexType>& other);
 MutexType::scoped_try_lock& operator=(MutexType::scoped_try_lock<MutexType>& other);
public:
 MutexType::scoped_try_lock();

explicit MutexType::scoped_try_lock(MutexType& m);
 MutexType::scoped_try_lock(MutexType& m_,adopt_lock_t);
 MutexType::scoped_try_lock(MutexType& m_,defer_lock_t);
 MutexType::scoped_try_lock(MutexType& m_,try_to_lock_t);

 MutexType::scoped_try_lock(MutexType::scoped_try_lock<MutexType>&& other);
 MutexType::scoped_try_lock& operator=(MutexType::scoped_try_lock<MutexType>&& other);

void swap(MutexType::scoped_try_lock&& other);

void lock();
bool try_lock();
void unlock();
bool owns_lock() const;

 MutexType* mutex() const;
 MutexType* release();

bool operator!() const;

typedef unspecified-bool-type bool_type;
operator bool_type() const;

};

The member typedef scoped_try_lock is provided for each distinct MutexType as a typedef to a class with the preceding definition.
The semantics of each constructor and member function are identical to those of boost::unique_lock<MutexType> for the same
MutexType, except that the constructor that takes a single reference to a mutex will call m.try_lock() rather than m.lock().

Lock functions

Non-member function lock(Lockable1,Lockable2,...)

template<typename Lockable1,typename Lockable2>
void lock(Lockable1& l1,Lockable2& l2);

template<typename Lockable1,typename Lockable2,typename Lockable3>
void lock(Lockable1& l1,Lockable2& l2,Lockable3& l3);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4>
void lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4,typename Lock↵
able5>
void lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4,Lockable5& l5);

Effects: Locks the Lockable objects supplied as arguments in an unspecified and indeterminate order in a way that
avoids deadlock. It is safe to call this function concurrently from multiple threads with the same mutexes (or
other lockable objects) in different orders without risk of deadlock. If any of the lock() or try_lock()
operations on the supplied Lockable objects throws an exception any locks acquired by the function will
be released before the function exits.

32

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Any exceptions thrown by calling lock() or try_lock() on the supplied Lockable objects.

Postcondition: All the supplied Lockable objects are locked by the calling thread.

Non-member function lock(begin,end)

template<typename ForwardIterator>
void lock(ForwardIterator begin,ForwardIterator end);

Preconditions: The value_type of ForwardIterator must implement the Lockable concept

Effects: Locks all the Lockable objects in the supplied range in an unspecified and indeterminate order in a way
that avoids deadlock. It is safe to call this function concurrently from multiple threads with the same mutexes
(or other lockable objects) in different orders without risk of deadlock. If any of the lock() or try_lock()
operations on the Lockable objects in the supplied range throws an exception any locks acquired by the
function will be released before the function exits.

Throws: Any exceptions thrown by calling lock() or try_lock() on the supplied Lockable objects.

Postcondition: All the Lockable objects in the supplied range are locked by the calling thread.

Non-member function try_lock(Lockable1,Lockable2,...)

template<typename Lockable1,typename Lockable2>
int try_lock(Lockable1& l1,Lockable2& l2);

template<typename Lockable1,typename Lockable2,typename Lockable3>
int try_lock(Lockable1& l1,Lockable2& l2,Lockable3& l3);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4>
int try_lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4,typename Lock↵
able5>
int try_lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4,Lockable5& l5);

Effects: Calls try_lock() on each of the Lockable objects supplied as arguments. If any of the calls to try_lock()
returns false then all locks acquired are released and the zero-based index of the failed lock is returned.

If any of the try_lock() operations on the supplied Lockable objects throws an exception any locks acquired
by the function will be released before the function exits.

Returns: -1 if all the supplied Lockable objects are now locked by the calling thread, the zero-based index of the
object which could not be locked otherwise.

Throws: Any exceptions thrown by calling try_lock() on the supplied Lockable objects.

Postcondition: If the function returns -1, all the supplied Lockable objects are locked by the calling thread. Otherwise any
locks acquired by this function will have been released.

Non-member function try_lock(begin,end)

template<typename ForwardIterator>
ForwardIterator try_lock(ForwardIterator begin,ForwardIterator end);

Preconditions: The value_type of ForwardIterator must implement the Lockable concept

33

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Calls try_lock() on each of the Lockable objects in the supplied range. If any of the calls to try_lock()
returns false then all locks acquired are released and an iterator referencing the failed lock is returned.

If any of the try_lock() operations on the supplied Lockable objects throws an exception any locks acquired
by the function will be released before the function exits.

Returns: end if all the supplied Lockable objects are now locked by the calling thread, an iterator referencing the
object which could not be locked otherwise.

Throws: Any exceptions thrown by calling try_lock() on the supplied Lockable objects.

Postcondition: If the function returns end then all the Lockable objects in the supplied range are locked by the calling
thread, otherwise all locks acquired by the function have been released.

Mutex Types

Class mutex

#include <boost/thread/mutex.hpp>

class mutex:
 boost::noncopyable
{
public:
 mutex();

~mutex();

void lock();
bool try_lock();
void unlock();

typedef platform-specific-type native_handle_type;
 native_handle_type native_handle();

typedef unique_lock<mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;

};

boost::mutex implements the Lockable concept to provide an exclusive-ownership mutex. At most one thread can own the lock
on a given instance of boost::mutex at any time. Multiple concurrent calls to lock(), try_lock() and unlock() shall be per-
mitted.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

34

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Typedef try_mutex

#include <boost/thread/mutex.hpp>

typedef mutex try_mutex;

boost::try_mutex is a typedef to boost::mutex, provided for backwards compatibility with previous releases of boost.

Class timed_mutex

#include <boost/thread/mutex.hpp>

class timed_mutex:
 boost::noncopyable
{
public:
 timed_mutex();

~timed_mutex();

void lock();
void unlock();
bool try_lock();
bool timed_lock(system_time const & abs_time);

template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);

typedef platform-specific-type native_handle_type;
 native_handle_type native_handle();

typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_timed_lock scoped_lock;

};

boost::timed_mutex implements the TimedLockable concept to provide an exclusive-ownership mutex. At most one thread
can own the lock on a given instance of boost::timed_mutex at any time. Multiple concurrent calls to lock(), try_lock(),
timed_lock(), timed_lock() and unlock() shall be permitted.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

35

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class recursive_mutex

#include <boost/thread/recursive_mutex.hpp>

class recursive_mutex:
 boost::noncopyable
{
public:
 recursive_mutex();

~recursive_mutex();

void lock();
bool try_lock();
void unlock();

typedef platform-specific-type native_handle_type;
 native_handle_type native_handle();

typedef unique_lock<recursive_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;

};

boost::recursive_mutex implements the Lockable concept to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of boost::recursive_mutex at any time. Multiple concurrent calls to lock(),
try_lock() and unlock() shall be permitted. A thread that already has exclusive ownership of a given boost::recursive_mutex
instance can call lock() or try_lock() to acquire an additional level of ownership of the mutex. unlock() must be called once
for each level of ownership acquired by a single thread before ownership can be acquired by another thread.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

Typedef recursive_try_mutex

#include <boost/thread/recursive_mutex.hpp>

typedef recursive_mutex recursive_try_mutex;

boost::recursive_try_mutex is a typedef to boost::recursive_mutex, provided for backwards compatibility with pre-
vious releases of boost.

36

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class recursive_timed_mutex

#include <boost/thread/recursive_mutex.hpp>

class recursive_timed_mutex:
 boost::noncopyable
{
public:
 recursive_timed_mutex();

~recursive_timed_mutex();

void lock();
bool try_lock();
void unlock();

bool timed_lock(system_time const & abs_time);

template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);

typedef platform-specific-type native_handle_type;
 native_handle_type native_handle();

typedef unique_lock<recursive_timed_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_lock scoped_timed_lock;

};

boost::recursive_timed_mutex implements the TimedLockable concept to provide an exclusive-ownership recursive mutex.
At most one thread can own the lock on a given instance of boost::recursive_timed_mutex at any time. Multiple concurrent
calls to lock(), try_lock(), timed_lock(), timed_lock() and unlock() shall be permitted. A thread that already has ex-
clusive ownership of a given boost::recursive_timed_mutex instance can call lock(), timed_lock(), timed_lock() or
try_lock() to acquire an additional level of ownership of the mutex. unlock() must be called once for each level of ownership
acquired by a single thread before ownership can be acquired by another thread.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

37

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class shared_mutex

#include <boost/thread/shared_mutex.hpp>

class shared_mutex
{
public:
 shared_mutex();

~shared_mutex();

void lock_shared();
bool try_lock_shared();
bool timed_lock_shared(system_time const& timeout);
void unlock_shared();

void lock();
bool try_lock();
bool timed_lock(system_time const& timeout);
void unlock();

void lock_upgrade();
void unlock_upgrade();

void unlock_upgrade_and_lock();
void unlock_and_lock_upgrade();
void unlock_and_lock_shared();
void unlock_upgrade_and_lock_shared();

};

The class boost::shared_mutex provides an implementation of a multiple-reader / single-writer mutex. It implements the Up-
gradeLockable concept.

Multiple concurrent calls to lock(), try_lock(), timed_lock(), lock_shared(), try_lock_shared() and
timed_lock_shared() shall be permitted.

Condition Variables

Synopsis

The classes condition_variable and condition_variable_any provide a mechanism for one thread to wait for notification
from another thread that a particular condition has become true. The general usage pattern is that one thread locks a mutex and then
calls wait on an instance of condition_variable or condition_variable_any. When the thread is woken from the wait,
then it checks to see if the appropriate condition is now true, and continues if so. If the condition is not true, then the thread then
calls wait again to resume waiting. In the simplest case, this condition is just a boolean variable:

38

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::condition_variable cond;
boost::mutex mut;
bool data_ready;

void process_data();

void wait_for_data_to_process()
{
 boost::unique_lock<boost::mutex> lock(mut);

while(!data_ready)
{

 cond.wait(lock);
}

 process_data();
}

Notice that the lock is passed to wait: wait will atomically add the thread to the set of threads waiting on the condition variable,
and unlock the mutex. When the thread is woken, the mutex will be locked again before the call to wait returns. This allows other
threads to acquire the mutex in order to update the shared data, and ensures that the data associated with the condition is correctly
synchronized.

In the mean time, another thread sets the condition to true, and then calls either notify_one or notify_all on the condition
variable to wake one waiting thread or all the waiting threads respectively.

void retrieve_data();
void prepare_data();

void prepare_data_for_processing()
{
 retrieve_data();
 prepare_data();

{
 boost::lock_guard<boost::mutex> lock(mut);
 data_ready=true;

}
 cond.notify_one();
}

Note that the same mutex is locked before the shared data is updated, but that the mutex does not have to be locked across the call
to notify_one.

This example uses an object of type condition_variable, but would work just as well with an object of type condition_vari-
able_any: condition_variable_any is more general, and will work with any kind of lock or mutex, whereas condition_vari-
able requires that the lock passed to wait is an instance of boost::unique_lock<boost::mutex>. This enables condi-
tion_variable to make optimizations in some cases, based on the knowledge of the mutex type; condition_variable_any
typically has a more complex implementation than condition_variable.

39

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class condition_variable

#include <boost/thread/condition_variable.hpp>

namespace boost
{

class condition_variable
{
public:

 condition_variable();
~condition_variable();

void notify_one();
void notify_all();

void wait(boost::unique_lock<boost::mutex>& lock);

template<typename predicate_type>
void wait(boost::unique_lock<boost::mutex>& lock,predicate_type predicate);

bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time);

template<typename duration_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time);

template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time,pre↵

dicate_type predicate);

template<typename duration_type,typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time,pre↵

dicate_type predicate);

// backwards compatibility

bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time);

template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time,predic↵

ate_type predicate);
};

}

condition_variable()

Effects: Constructs an object of class condition_variable.

Throws: boost::thread_resource_error if an error occurs.

~condition_variable()

Precondition: All threads waiting on *this have been notified by a call to notify_one or notify_all (though the respective
calls to wait or timed_wait need not have returned).

Effects: Destroys the object.

Throws: Nothing.

void notify_one()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks one of those threads.

40

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing.

void notify_all()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks all of those threads.

Throws: Nothing.

void wait(boost::unique_lock<boost::mutex>& lock)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or timed_wait in all
the threads currently waiting on *this would return the same value as lock->mutex() for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), or spuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking lock.lock() before the call to wait returns. The lock
is also reacquired by invoking lock.lock() if the function exits with an exception.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type

pred)

Effects: As-if

while(!pred())
{
 wait(lock);
}

bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or timed_wait in all
the threads currently waiting on *this would return the same value as lock->mutex() for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), when the time as reported by
boost::get_system_time() would be equal to or later than the specified abs_time, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking lock.lock() before the
call to wait returns. The lock is also reacquired by invoking lock.lock() if the function exits with an ex-
ception.

Returns: false if the call is returning because the time specified by abs_time was reached, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

41

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type

const& rel_time)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or timed_wait in all
the threads currently waiting on *this would return the same value as lock->mutex() for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), after the period of time indicated by the rel_time
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking lock.lock() before the call to wait returns. The lock is also reacquired by invoking
lock.lock() if the function exits with an exception.

Returns: false if the call is returning because the time period specified by rel_time has elapsed, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

Note

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,

boost::system_time const& abs_time, predicate_type pred)

Effects: As-if

while(!pred())
{

if(!timed_wait(lock,abs_time))
{

return pred();
}

}
return true;

42

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class condition_variable_any

#include <boost/thread/condition_variable.hpp>

namespace boost
{

class condition_variable_any
{
public:

 condition_variable_any();
~condition_variable_any();

void notify_one();
void notify_all();

template<typename lock_type>
void wait(lock_type& lock);

template<typename lock_type,typename predicate_type>
void wait(lock_type& lock,predicate_type predicate);

template<typename lock_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time);

template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time);

template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time,predicate_type predicate);

template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time,predicate_type predicate);

// backwards compatibility

template<typename lock_type>
bool timed_wait(lock_type>& lock,boost::xtime const& abs_time);

template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::xtime const& abs_time,predicate_type predicate);

};
}

condition_variable_any()

Effects: Constructs an object of class condition_variable_any.

Throws: boost::thread_resource_error if an error occurs.

~condition_variable_any()

Precondition: All threads waiting on *this have been notified by a call to notify_one or notify_all (though the respective
calls to wait or timed_wait need not have returned).

Effects: Destroys the object.

Throws: Nothing.

void notify_one()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks one of those threads.

43

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing.

void notify_all()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks all of those threads.

Throws: Nothing.

template<typename lock_type> void wait(lock_type& lock)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), or spuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking lock.lock() before the call to wait returns. The lock
is also reacquired by invoking lock.lock() if the function exits with an exception.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type

pred)

Effects: As-if

while(!pred())
{
 wait(lock);
}

template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), when the time as reported by
boost::get_system_time() would be equal to or later than the specified abs_time, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking lock.lock() before the
call to wait returns. The lock is also reacquired by invoking lock.lock() if the function exits with an ex-
ception.

Returns: false if the call is returning because the time specified by abs_time was reached, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type

const& rel_time)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), after the period of time indicated by the rel_time
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking lock.lock() before the call to wait returns. The lock is also reacquired by invoking
lock.lock() if the function exits with an exception.

44

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: false if the call is returning because the time period specified by rel_time has elapsed, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

Note

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::sys-

tem_time const& abs_time, predicate_type pred)

Effects: As-if

while(!pred())
{

if(!timed_wait(lock,abs_time))
{

return pred();
}

}
return true;

Typedef condition

#include <boost/thread/condition.hpp>

typedef condition_variable_any condition;

The typedef condition is provided for backwards compatibility with previous boost releases.

One-time Initialization
boost::call_once provides a mechanism for ensuring that an initialization routine is run exactly once without data races or
deadlocks.

Typedef once_flag

#include <boost/thread/once.hpp>

typedef platform-specific-type once_flag;
#define BOOST_ONCE_INIT platform-specific-initializer

Objects of type boost::once_flag shall be initialized with BOOST_ONCE_INIT:

45

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::once_flag f=BOOST_ONCE_INIT;

Non-member function call_once

#include <boost/thread/once.hpp>

template<typename Callable>
void call_once(once_flag& flag,Callable func);

Requires: Callable is CopyConstructible. Copying func shall have no side effects, and the effect of calling
the copy shall be equivalent to calling the original.

Effects: Calls to call_once on the same once_flag object are serialized. If there has been no prior effective
call_once on the same once_flag object, the argument func (or a copy thereof) is called as-if by in-
voking func(), and the invocation of call_once is effective if and only if func() returns without ex-
ception. If an exception is thrown, the exception is propagated to the caller. If there has been a prior effective
call_once on the same once_flag object, the call_once returns without invoking func.

Synchronization: The completion of an effective call_once invocation on a once_flag object, synchronizes with all
subsequent call_once invocations on the same once_flag object.

Throws: thread_resource_error when the effects cannot be achieved. or any exception propagated from func.

void call_once(void (*func)(),once_flag& flag);

This second overload is provided for backwards compatibility. The effects of call_once(func,flag) shall be the same as those
of call_once(flag,func).

Barriers
A barrier is a simple concept. Also known as a rendezvous, it is a synchronization point between multiple threads. The barrier is
configured for a particular number of threads (n), and as threads reach the barrier they must wait until all n threads have arrived.
Once the n-th thread has reached the barrier, all the waiting threads can proceed, and the barrier is reset.

Class barrier

#include <boost/thread/barrier.hpp>

class barrier
{
public:
 barrier(unsigned int count);

~barrier();

bool wait();
};

Instances of boost::barrier are not copyable or movable.

Constructor

barrier(unsigned int count);

Effects: Construct a barrier for count threads.

46

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: boost::thread_resource_error if an error occurs.

Destructor

~barrier();

Precondition: No threads are waiting on *this.

Effects: Destroys *this.

Throws: Nothing.

Member function wait

bool wait();

Effects: Block until count threads have called wait on *this. When the count-th thread calls wait, all waiting threads are
unblocked, and the barrier is reset.

Returns: true for exactly one thread from each batch of waiting threads, false otherwise.

Throws: boost::thread_resource_error if an error occurs.

Thread Local Storage
Synopsis

Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a multi-
threaded application. One example is the C errno variable, used for storing the error code related to functions from the Standard C
library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide a separate
instance of errno for each thread, in order to avoid different threads competing to read or update the value.

Though compilers often provide this facility in the form of extensions to the declaration syntax (such as __declspec(thread) or
__thread annotations on static or namespace-scope variable declarations), such support is non-portable, and is often limited in
some way, such as only supporting POD types.

Portable thread-local storage with boost::thread_specific_ptr

boost::thread_specific_ptr provides a portable mechanism for thread-local storage that works on all compilers supported
by Boost.Thread. Each instance of boost::thread_specific_ptr represents a pointer to an object (such as errno) where each
thread must have a distinct value. The value for the current thread can be obtained using the get() member function, or by using
the * and -> pointer deference operators. Initially the pointer has a value of NULL in each thread, but the value for the current thread
can be set using the reset() member function.

If the value of the pointer for the current thread is changed using reset(), then the previous value is destroyed by calling the cleanup
routine. Alternatively, the stored value can be reset to NULL and the prior value returned by calling the release() member function,
allowing the application to take back responsibility for destroying the object.

Cleanup at thread exit

When a thread exits, the objects associated with each boost::thread_specific_ptr instance are destroyed. By default, the
object pointed to by a pointer p is destroyed by invoking delete p, but this can be overridden for a specific instance of
boost::thread_specific_ptr by providing a cleanup routine to the constructor. In this case, the object is destroyed by invoking
func(p) where func is the cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified order.
If a cleanup routine sets the value of associated with an instance of boost::thread_specific_ptr that has already been cleaned

47

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of boost::thread_specif-
ic_ptr with values.

Class thread_specific_ptr

#include <boost/thread/tss.hpp>

template <typename T>
class thread_specific_ptr
{
public:
 thread_specific_ptr();

explicit thread_specific_ptr(void (*cleanup_function)(T*));
~thread_specific_ptr();

 T* get() const;
 T* operator->() const;
 T& operator*() const;

 T* release();
void reset(T* new_value=0);

};

thread_specific_ptr();

Requires: delete this->get() is well-formed.

Effects: Construct a thread_specific_ptr object for storing a pointer to an object of type T specific to each thread. The
default delete-based cleanup function will be used to destroy any thread-local objects when reset() is called, or
the thread exits.

Throws: boost::thread_resource_error if an error occurs.

explicit thread_specific_ptr(void (*cleanup_function)(T*));

Requires: cleanup_function(this->get()) does not throw any exceptions.

Effects: Construct a thread_specific_ptr object for storing a pointer to an object of type T specific to each thread. The
supplied cleanup_function will be used to destroy any thread-local objects when reset() is called, or the thread
exits.

Throws: boost::thread_resource_error if an error occurs.

~thread_specific_ptr();

Effects: Calls this->reset() to clean up the associated value for the current thread, and destroys *this.

Throws: Nothing.

Note

Care needs to be taken to ensure that any threads still running after an instance of boost::thread_specific_ptr
has been destroyed do not call any member functions on that instance.

T* get() const;

Returns: The pointer associated with the current thread.

48

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing.

Note

The initial value associated with an instance of boost::thread_specific_ptr is NULL for each thread.

T* operator->() const;

Returns: this->get()

Throws: Nothing.

T& operator*() const;

Requires: this->get is not NULL.

Returns: *(this->get())

Throws: Nothing.

void reset(T* new_value=0);

Effects: If this->get()!=new_value and this->get() is non-NULL, invoke delete this->get() or
cleanup_function(this->get()) as appropriate. Store new_value as the pointer associated with the
current thread.

Postcondition: this->get()==new_value

Throws: boost::thread_resource_error if an error occurs.

T* release();

Effects: Return this->get() and store NULL as the pointer associated with the current thread without invoking the
cleanup function.

Postcondition: this->get()==0

Throws: Nothing.

Date and Time Requirements
As of Boost 1.35.0, the Boost.Thread library uses the Boost.Date_Time library for all operations that require a time out. These include
(but are not limited to):

• boost::this_thread::sleep()

• timed_join()

• timed_wait()

• timed_lock()

For the overloads that accept an absolute time parameter, an object of type boost::system_time is required. Typically, this will
be obtained by adding a duration to the current time, obtained with a call to boost::get_system_time(). e.g.

49

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system_time const timeout=boost::get_system_time() + boost::posix_time::milliseconds(500);

extern bool done;
extern boost::mutex m;
extern boost::condition_variable cond;

boost::unique_lock<boost::mutex> lk(m);
while(!done)
{

if(!cond.timed_wait(lk,timeout))
{

throw "timed out";
}

}

For the overloads that accept a TimeDuration parameter, an object of any type that meets the Boost.Date_Time Time Duration re-
quirements can be used, e.g.

boost::this_thread::sleep(boost::posix_time::milliseconds(25));

boost::mutex m;
if(m.timed_lock(boost::posix_time::nanoseconds(100)))
{

// ...
}

Typedef system_time

#include <boost/thread/thread_time.hpp>

typedef boost::posix_time::ptime system_time;

See the documentation for boost::posix_time::ptime in the Boost.Date_Time library.

Non-member function get_system_time()

#include <boost/thread/thread_time.hpp>

system_time get_system_time();

Returns: The current time.

Throws: Nothing.

Acknowledgments
The original implementation of Boost.Thread was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite Boost.Thread to William Kempf's design with fresh code that could be released
under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a thread
library for C++, this library has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as possible.

Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original Boost.Thread library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.

50

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on
the implementation details of the code.

51

Thread

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Thread
	Table of Contents
	Overview
	Changes since boost 1.35
	Thread Management
	Class thread
	Default Constructor
	Thread Constructor
	Thread Constructor with arguments
	Thread Destructor
	Member function joinable()
	Member function join()
	Member function timed_join()
	Member function detach()
	Member function get_id()
	Member function interrupt()
	Static member function hardware_concurrency()
	Member function native_handle()
	operator==
	operator!=
	Static member function sleep()
	Static member function yield()
	Member function swap()
	Non-member function swap()
	Class boost::thread::id
	Default constructor
	operator==
	operator!=
	operator<
	operator>
	operator>=
	operator>=
	Friend operator<<

	Namespace this_thread
	Non-member function get_id()
	Non-member function interruption_point()
	Non-member function interruption_requested()
	Non-member function interruption_enabled()
	Non-member function sleep()
	Non-member function yield()
	Class disable_interruption
	Constructor
	Destructor

	Class restore_interruption
	Constructor
	Destructor

	Non-member function template at_thread_exit()

	Class thread_group
	Constructor
	Destructor
	Member function create_thread()
	Member function add_thread()
	Member function remove_thread()
	Member function join_all()
	Member function interrupt_all()
	Member function size()

	Synchronization
	Mutex Concepts
	Lockable Concept
	void lock()
	bool try_lock()
	void unlock()

	TimedLockable Concept
	bool timed_lock(boost::system_time const& abs_time)
	template<typename DurationType> bool timed_lock(DurationType const& rel_time)

	SharedLockable Concept
	void lock_shared()
	bool try_lock_shared()
	bool timed_lock_shared(boost::system_time const& abs_time)
	void unlock_shared()

	UpgradeLockable Concept
	void lock_upgrade()
	void unlock_upgrade()
	void unlock_upgrade_and_lock()
	void unlock_upgrade_and_lock_shared()
	void unlock_and_lock_upgrade()

	Lock Types
	Class template lock_guard
	lock_guard(Lockable & m)
	lock_guard(Lockable & m,boost::adopt_lock_t)
	~lock_guard()

	Class template unique_lock
	unique_lock()
	unique_lock(Lockable & m)
	unique_lock(Lockable & m,boost::adopt_lock_t)
	unique_lock(Lockable & m,boost::defer_lock_t)
	unique_lock(Lockable & m,boost::try_to_lock_t)
	unique_lock(Lockable & m,boost::system_time const& abs_time)
	~unique_lock()
	bool owns_lock() const
	Lockable* mutex() const
	operator unspecified-bool-type() const
	bool operator!() const
	Lockable* release()

	Class template shared_lock
	shared_lock()
	shared_lock(Lockable & m)
	shared_lock(Lockable & m,boost::adopt_lock_t)
	shared_lock(Lockable & m,boost::defer_lock_t)
	shared_lock(Lockable & m,boost::try_to_lock_t)
	shared_lock(Lockable & m,boost::system_time const& abs_time)
	~shared_lock()
	bool owns_lock() const
	Lockable* mutex() const
	operator unspecified-bool-type() const
	bool operator!() const
	Lockable* release()

	Class template upgrade_lock
	Class template upgrade_to_unique_lock
	Mutex-specific class scoped_try_lock

	Lock functions
	Non-member function lock(Lockable1,Lockable2,...)
	Non-member function lock(begin,end)
	Non-member function try_lock(Lockable1,Lockable2,...)
	Non-member function try_lock(begin,end)

	Mutex Types
	Class mutex
	Member function native_handle()

	Typedef try_mutex
	Class timed_mutex
	Member function native_handle()

	Class recursive_mutex
	Member function native_handle()

	Typedef recursive_try_mutex
	Class recursive_timed_mutex
	Member function native_handle()

	Class shared_mutex

	Condition Variables
	Class condition_variable
	condition_variable()
	~condition_variable()
	void notify_one()
	void notify_all()
	void wait(boost::unique_lock<boost::mutex>& lock)
	template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)
	bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)
	template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)
	template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)

	Class condition_variable_any
	condition_variable_any()
	~condition_variable_any()
	void notify_one()
	void notify_all()
	template<typename lock_type> void wait(lock_type& lock)
	template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)
	template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)
	template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)
	template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)

	Typedef condition

	One-time Initialization
	Typedef once_flag
	Non-member function call_once

	Barriers
	Class barrier

	Thread Local Storage
	Class thread_specific_ptr
	thread_specific_ptr();
	explicit thread_specific_ptr(void (*cleanup_function)(T*));
	~thread_specific_ptr();
	T* get() const;
	T* operator->() const;
	T& operator*() const;
	void reset(T* new_value=0);
	T* release();

	Date and Time Requirements
	Typedef system_time
	Non-member function get_system_time()

	Acknowledgments

