
Boost.Signals
Douglas Gregor
Copyright © 2001-2004 Douglas Gregor

Use, modification and distribution is subject to the Boost Software License, Version 1.0. (See accompanying file LI-
CENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Introduction .. 1
Tutorial .. 2

How to Read this Tutorial .. 2
Compatibility Note ... 2
Hello, World! (Beginner) ... 2
Calling multiple slots .. 3
Passing values to and from slots .. 5
Connection Management ... 9
Example: Document-View ... 12
Linking against the Signals library ... 15

Reference ... 15
Header <boost/signal.hpp> ... 15
Header <boost/signals/slot.hpp> .. 20
Header <boost/signals/trackable.hpp> .. 21
Header <boost/signals/connection.hpp> .. 23
Header <boost/visit_each.hpp> ... 27
Header <boost/last_value.hpp> ... 28

Frequently Asked Questions ... 30
Design Overview .. 32

Type Erasure ... 32
connection class ... 32
Slot Call Iterator ... 32
visit_each function template ... 33

Design Rationale .. 34
Choice of Slot Definitions .. 34
User-level Connection Management ... 34
Combiner Interface ... 35
Connection Interfaces: += operator .. 36
trackable rationale .. 36
Comparison with other Signal/Slot implementations ... 37

Testsuite ... 38
Acceptance tests ... 38

Introduction
The Boost.Signals library is an implementation of a managed signals and slots system. Signals represent callbacks with multiple
targets, and are also called publishers or events in similar systems. Signals are connected to some set of slots, which are callback
receivers (also called event targets or subscribers), which are called when the signal is "emitted."

Signals and slots are managed, in that signals and slots (or, more properly, objects that occur as part of the slots) track all connections
and are capable of automatically disconnecting signal/slot connections when either is destroyed. This enables the user to make signal/slot
connections without expending a great effort to manage the lifetimes of those connections with regard to the lifetimes of all objects
involved.

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When signals are connected to multiple slots, there is a question regarding the relationship between the return values of the slots and
the return value of the signals. Boost.Signals allows the user to specify the manner in which multiple return values are combined.

Tutorial

How to Read this Tutorial
This tutorial is not meant to be read linearly. Its top-level structure roughly separates different concepts in the library (e.g., handling
calling multiple slots, passing values to and from slots) and in each of these concepts the basic ideas are presented first and then
more complex uses of the library are described later. Each of the sections is marked Beginner, Intermediate, or Advanced to help
guide the reader. The Beginner sections include information that all library users should know; one can make good use of the Signals
library after having read only the Beginner sections. The Intermediate sections build on the Beginner sections with slightly more
complex uses of the library. Finally, the Advanced sections detail very advanced uses of the Signals library, that often require a solid
working knowledge of the Beginner and Intermediate topics; most users will not need to read the Advanced sections.

Compatibility Note
Boost.Signals has two syntactical forms: the preferred form and the compatibility form. The preferred form fits more closely with
the C++ language and reduces the number of separate template parameters that need to be considered, often improving readability;
however, the preferred form is not supported on all platforms due to compiler bugs. The compatible form will work on all compilers
supported by Boost.Signals. Consult the table below to determine which syntactic form to use for your compiler. Users of
Boost.Function, please note that the preferred syntactic form in Signals is equivalent to that of Function's preferred syntactic form.

If your compiler does not appear in this list, please try the preferred syntax and report your results to the Boost list so that we can
keep this table up-to-date.

Portable syntaxPreferred syntax

•• Any compiler supporting the preferred syntaxGNU C++ 2.95.x, 3.0.x, 3.1.x

• •Comeau C++ 4.2.45.2 Microsoft Visual C++ 6.0, 7.0

•• Borland C++ 5.5.1SGI MIPSpro 7.3.0

• •Intel C++ 5.0, 6.0 Sun WorkShop 6 update 2 C++ 5.3

•• Metrowerks CodeWarrior 8.1Compaq's cxx 6.2

• Microsoft Visual C++ 7.1

Hello, World! (Beginner)
The following example writes "Hello, World!" using signals and slots. First, we create a signal sig, a signal that takes no arguments
and has a void return value. Next, we connect the hello function object to the signal using the connect method. Finally, use the
signal sig like a function to call the slots, which in turns invokes HelloWorld::operator() to print "Hello, World!".

2

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Portable syntaxPreferred syntax

struct HelloWorld
{
 void operator()() const
 {
 std::cout << "Hello, World!" << std::endl;
 }
};

// ...

// Signal with no arguments and a void return ↵
value
boost::signal0<void> sig;

// Connect a HelloWorld slot
HelloWorld hello;
sig.connect(hello);

// Call all of the slots
sig();

struct HelloWorld
{
 void operator()() const
 {
 std::cout << "Hello, World!" << std::endl;
 }
};

// ...

// Signal with no arguments and a void return ↵
value
boost::signal<void ()> sig;

// Connect a HelloWorld slot
HelloWorld hello;
sig.connect(hello);

// Call all of the slots
sig();

Calling multiple slots

Connecting multiple slots (Beginner)

Calling a single slot from a signal isn't very interesting, so we can make the Hello, World program more interesting by splitting the
work of printing "Hello, World!" into two completely separate slots. The first slot will print "Hello" and may look like this:

struct Hello
{
 void operator()() const
 {
 std::cout << "Hello";
 }
};

The second slot will print ", World!" and a newline, to complete the program. The second slot may look like this:

struct World
{
 void operator()() const
 {
 std::cout << ", World!" << std::endl;
 }
};

Like in our previous example, we can create a signal sig that takes no arguments and has a void return value. This time, we connect
both a hello and a world slot to the same signal, and when we call the signal both slots will be called.

3

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Portable syntaxPreferred syntax

boost::signal0<void> sig;

sig.connect(Hello());
sig.connect(World());

sig();

boost::signal<void ()> sig;

sig.connect(Hello());
sig.connect(World());

sig();

By default, slots are called in first-in first-out (FIFO) order, so the output of this program will be as expected:

Hello, World!

Ordering slot call groups (Intermediate)

Slots are free to have side effects, and that can mean that some slots will have to be called before others even if they are not connected
in that order. The Boost.Signals library allows slots to be placed into groups that are ordered in some way. For our Hello, World
program, we want "Hello" to be printed before ", World!", so we put "Hello" into a group that must be executed before the group
that ", World!" is in. To do this, we can supply an extra parameter at the beginning of the connect call that specifies the group.
Group values are, by default, ints, and are ordered by the integer < relation. Here's how we construct Hello, World:

Portable syntaxPreferred syntax

boost::signal0<void> sig;
sig.connect(1, World());
sig.connect(0, Hello());
sig();

boost::signal<void ()> sig;
sig.connect(1, World());
sig.connect(0, Hello());
sig();

This program will correctly print "Hello, World!", because the Hello object is in group 0, which precedes group 1 where the World
object resides. The group parameter is, in fact, optional. We omitted it in the first Hello, World example because it was unnecessary
when all of the slots are independent. So what happens if we mix calls to connect that use the group parameter and those that don't?
The "unnamed" slots (i.e., those that have been connected without specifying a group name) can be placed at the front or back of
the slot list (by passing boost::signals::at_front or boost::signals::at_back as the last parameter to connect, respect-
ively), and defaults to the end of the list. When a group is specified, the final parameter describes where the slot will be placed
within the group ordering. If we add a new slot to our example like this:

struct GoodMorning
{
 void operator()() const
 {
 std::cout << "... and good morning!" << std::endl;
 }
};

sig.connect(GoodMorning());

... we will get the result we wanted:

4

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Hello, World!
... and good morning!

Passing values to and from slots

Slot Arguments (Beginner)

Signals can propagate arguments to each of the slots they call. For instance, a signal that propagates mouse motion events might
want to pass along the new mouse coordinates and whether the mouse buttons are pressed.

As an example, we'll create a signal that passes two float arguments to its slots. Then we'll create a few slots that print the results
of various arithmetic operations on these values.

void print_sum(float x, float y)
{
 std::cout << "The sum is " << x+y << std::endl;
}

void print_product(float x, float y)
{
 std::cout << "The product is " << x*y << std::endl;
}

void print_difference(float x, float y)
{
 std::cout << "The difference is " << x-y << std::endl;
}

void print_quotient(float x, float y)
{
 std::cout << "The quotient is " << x/y << std::endl;
}

Portable syntaxPreferred syntax

boost::signal2<void, float, float> sig;

sig.connect(&print_sum);
sig.connect(&print_product);
sig.connect(&print_difference);
sig.connect(&print_quotient);

sig(5, 3);

boost::signal<void (float, float)> sig;

sig.connect(&print_sum);
sig.connect(&print_product);
sig.connect(&print_difference);
sig.connect(&print_quotient);

sig(5, 3);

This program will print out the following:

5

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The sum is 8
The product is 15
The difference is 2
The quotient is 1.66667

So any values that are given to sig when it is called like a function are passed to each of the slots. We have to declare the types of
these values up front when we create the signal. The type boost::signal<void (float, float)> means that the signal has a
void return value and takes two float values. Any slot connected to sig must therefore be able to take two float values.

Signal Return Values (Advanced)

Just as slots can receive arguments, they can also return values. These values can then be returned back to the caller of the signal
through a combiner. The combiner is a mechanism that can take the results of calling slots (there many be no results or a hundred;
we don't know until the program runs) and coalesces them into a single result to be returned to the caller. The single result is often
a simple function of the results of the slot calls: the result of the last slot call, the maximum value returned by any slot, or a container
of all of the results are some possibilities.

We can modify our previous arithmetic operations example slightly so that the slots all return the results of computing the product,
quotient, sum, or difference. Then the signal itself can return a value based on these results to be printed:

Portable syntaxPreferred syntax

float product(float x, float y) { return x*y; }
float quotient(float x, float y) { return x/y; }
float sum(float x, float y) { return x+y; }
float difference(float x, float y) { return x-
y; }

boost::signal2<float, float, float> sig;

sig.connect(&product);
sig.connect("ient);
sig.connect(&sum);
sig.connect(&difference);

std::cout << sig(5, 3) << std::endl;

float product(float x, float y) { return x*y; }
float quotient(float x, float y) { return x/y; }
float sum(float x, float y) { return x+y; }
float difference(float x, float y) { return x-
y; }

boost::signal<float (float x, float y)> sig;

sig.connect(&product);
sig.connect("ient);
sig.connect(&sum);
sig.connect(&difference);

std::cout << sig(5, 3) << std::endl;

This example program will output 2. This is because the default behavior of a signal that has a return type (float, the first template
argument given to the boost::signal class template) is to call all slots and then return the result returned by the last slot called.
This behavior is admittedly silly for this example, because slots have no side effects and the result is the last slot connect.

A more interesting signal result would be the maximum of the values returned by any slot. To do this, we create a custom combiner
that looks like this:

6

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename T>
struct maximum
{
 typedef T result_type;

 template<typename InputIterator>
 T operator()(InputIterator first, InputIterator last) const
 {
 // If there are no slots to call, just return the
 // default-constructed value
 if (first == last)
 return T();

 T max_value = *first++;
 while (first != last) {
 if (max_value < *first)
 max_value = *first;
 ++first;
 }

 return max_value;
 }
};

The maximum class template acts as a function object. Its result type is given by its template parameter, and this is the type it expects
to be computing the maximum based on (e.g., maximum<float> would find the maximum float in a sequence of floats). When
a maximum object is invoked, it is given an input iterator sequence [first, last) that includes the results of calling all of the
slots. maximum uses this input iterator sequence to calculate the maximum element, and returns that maximum value.

We actually use this new function object type by installing it as a combiner for our signal. The combiner template argument follows
the signal's calling signature:

Portable syntaxPreferred syntax

boost::signal2<float, float, float,
 maximum<float> > sig;

boost::signal<float (float x, float y),
 maximum<float> > sig;

Now we can connect slots that perform arithmetic functions and use the signal:

sig.connect("ient);
sig.connect(&product);
sig.connect(&sum);
sig.connect(&difference);

std::cout << sig(5, 3) << std::endl;

The output of this program will be 15, because regardless of the order in which the slots are connected, the product of 5 and 3 will
be larger than the quotient, sum, or difference.

In other cases we might want to return all of the values computed by the slots together, in one large data structure. This is easily
done with a different combiner:

7

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename Container>
struct aggregate_values
{
 typedef Container result_type;

 template<typename InputIterator>
 Container operator()(InputIterator first, InputIterator last) const
 {
 return Container(first, last);
 }
};

Again, we can create a signal with this new combiner:

Portable syntaxPreferred syntax

boost::signal2<float, float, float,
 aggregate_values<std::vector<float> > > sig;

sig.connect("ient);
sig.connect(&product);
sig.connect(&sum);
sig.connect(&difference);

std::vector<float> results = sig(5, 3);
std::copy(results.begin(), results.end(),
 std::ostream_iterator<float>(cout, " "));

boost::signal<float (float, float),
 aggregate_values<std::vector<float> > > sig;

sig.connect("ient);
sig.connect(&product);
sig.connect(&sum);
sig.connect(&difference);

std::vector<float> results = sig(5, 3);
std::copy(results.begin(), results.end(),
 std::ostream_iterator<float>(cout, " "));

The output of this program will contain 15, 8, 1.6667, and 2. It is interesting here that the first template argument for the signal
class, float, is not actually the return type of the signal. Instead, it is the return type used by the connected slots and will also be
the value_type of the input iterators passed to the combiner. The combiner itself is a function object and its result_type member
type becomes the return type of the signal.

The input iterators passed to the combiner transform dereference operations into slot calls. Combiners therefore have the option to
invoke only some slots until some particular criterion is met. For instance, in a distributed computing system, the combiner may ask
each remote system whether it will handle the request. Only one remote system needs to handle a particular request, so after a remote
system accepts the work we do not want to ask any other remote systems to perform the same task. Such a combiner need only check
the value returned when dereferencing the iterator, and return when the value is acceptable. The following combiner returns the first
non-NULL pointer to a FulfilledRequest data structure, without asking any later slots to fulfill the request:

8

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct DistributeRequest {
 typedef FulfilledRequest* result_type;

 template<typename InputIterator>
 result_type operator()(InputIterator first, InputIterator last) const
 {
 while (first != last) {
 if (result_type fulfilled = *first)
 return fulfilled;
 ++first;
 }
 return 0;
 }
};

Connection Management

Disconnecting Slots (Beginner)

Slots aren't expected to exist indefinately after they are connected. Often slots are only used to receive a few events and are then
disconnected, and the programmer needs control to decide when a slot should no longer be connected.

The entry point for managing connections explicitly is the boost::signals::connection class. The connection class uniquely
represents the connection between a particular signal and a particular slot. The connected() method checks if the signal and slot
are still connected, and the disconnect() method disconnects the signal and slot if they are connected before it is called. Each
call to the signal's connect() method returns a connection object, which can be used to determine if the connection still exists or
to disconnect the signal and slot.

boost::signals::connection c = sig.connect(HelloWorld());
if (c.connected()) {
// c is still connected to the signal
 sig(); // Prints "Hello, World!"
}

c.disconnect(); // Disconnect the HelloWorld object
assert(!c.connected()); c isn't connected any more

sig(); // Does nothing: there are no connected slots

Blocking Slots (Beginner)

Slots can be temporarily "blocked", meaning that they will be ignored when the signal is invoked but have not been disconnected.
The block member function temporarily blocks a slot, which can be unblocked via unblock. Here is an example of blocking/un-
blocking slots:

9

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::signals::connection c = sig.connect(HelloWorld());
sig(); // Prints "Hello, World!"

c.block(); // block the slot
assert(c.blocked());
sig(); // No output: the slot is blocked

c.unblock(); // unblock the slot
sig(); // Prints "Hello, World!"

Scoped connections (Intermediate)

The boost::signals::scoped_connection class references a signal/slot connection that will be disconnected when the
scoped_connection class goes out of scope. This ability is useful when a connection need only be temporary, e.g.,

{
 boost::signals::scoped_connection c = sig.connect(ShortLived());
 sig(); // will call ShortLived function object
}
sig(); // ShortLived function object no longer connected to sig

Disconnecting equivalent slots (Intermediate)

One can disconnect slots that are equivalent to a given function object using a form of the disconnect method, so long as the type
of the function object has an accessible == operator. For instance:

Portable syntaxPreferred syntax

void foo();
void bar();

signal0<void> sig;

sig.connect(&foo);
sig.connect(&bar);

// disconnects foo, but not bar
sig.disconnect(&foo);

void foo();
void bar();

signal<void()> sig;

sig.connect(&foo);
sig.connect(&bar);

// disconnects foo, but not bar
sig.disconnect(&foo);

Automatic connection management (Intermediate)

Boost.Signals can automatically track the lifetime of objects involved in signal/slot connections, including automatic disconnection
of slots when objects involved in the slot call are destroyed. For instance, consider a simple news delivery service, where clients
connect to a news provider that then sends news to all connected clients as information arrives. The news delivery service may be
constructed like this:

10

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Portable syntaxPreferred syntax

class NewsItem { /* ... */ };

boost::signal1<void, const NewsItem&> deliv↵
erNews;

class NewsItem { /* ... */ };

boost::signal<void (const NewsItem&)> deliv↵
erNews;

Clients that wish to receive news updates need only connect a function object that can receive news items to the deliverNews
signal. For instance, we may have a special message area in our application specifically for news, e.g.,:

struct NewsMessageArea : public MessageArea
{
public:
 // ...

 void displayNews(const NewsItem& news) const
 {
 messageText = news.text();
 update();
 }
};

// ...
NewsMessageArea newsMessageArea = new NewsMessageArea(/* ... */);
// ...
deliverNews.connect(boost::bind(&NewsMessageArea::displayNews,
 newsMessageArea, _1));

However, what if the user closes the news message area, destroying the newsMessageArea object that deliverNews knows about?
Most likely, a segmentation fault will occur. However, with Boost.Signals one need only make NewsMessageArea trackable, and
the slot involving newsMessageArea will be disconnected when newsMessageArea is destroyed. The NewsMessageArea class
is made trackable by deriving publicly from the boost::signals::trackable class, e.g.:

struct NewsMessageArea : public MessageArea, public boost::signals::trackable
{
 // ...
};

At this time there is a significant limitation to the use of trackable objects in making slot connections: function objects built using
Boost.Bind are understood, such that pointers or references to trackable objects passed to boost::bind will be found and tracked.

Warning: User-defined function objects and function objects from other libraries (e.g., Boost.Function or Boost.Lambda) do not
implement the required interfaces for trackable object detection, and will silently ignore any bound trackable objects. Future
versions of the Boost libraries will address this limitation.

When can disconnections occur? (Intermediate)

Signal/slot disconnections occur when any of these conditions occur:

• The connection is explicitly disconnected via the connection's disconnect method directly, or indirectly via the signal's discon-
nect method or scoped_connection's destructor.

• A trackable object bound to the slot is destroyed.

11

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The signal is destroyed.

These events can occur at any time without disrupting a signal's calling sequence. If a signal/slot connection is disconnected at any
time during a signal's calling sequence, the calling sequence will still continue but will not invoke the disconnected slot. Additionally,
a signal may be destroyed while it is in a calling sequence, and which case it will complete its slot call sequence but may not be accessed
directly.

Signals may be invoked recursively (e.g., a signal A calls a slot B that invokes signal A...). The disconnection behavior does not
change in the recursive case, except that the slot calling sequence includes slot calls for all nested invocations of the signal.

Passing slots (Intermediate)

Slots in the Boost.Signals library are created from arbitrary function objects, and therefore have no fixed type. However, it is com-
monplace to require that slots be passed through interfaces that cannot be templates. Slots can be passed via the slot_type for each
particular signal type and any function object compatible with the signature of the signal can be passed to a slot_type parameter.
For instance:

Portable syntaxPreferred syntax

class Button
{
 typedef boost::signal2<void,int,int> OnClick;

public:
 void doOnClick(const OnClick::slot_type& ↵
slot);

private:
 OnClick onClick;
};

void Button::doOnClick(
 const OnClick::slot_type& slot
)
{
 onClick.connect(slot);
}

void printCoordinates(long x, long y)
{
 std::cout << "(" << x << ", " << y << ")\n";
}

void f(Button& button)
{
 button.doOnClick(&printCoordinates);
}

class Button
{
 typedef boost::signal<void (int x, int y)> On↵
Click;

public:
 void doOnClick(const OnClick::slot_type& ↵
slot);

private:
 OnClick onClick;
};

void Button::doOnClick(
 const OnClick::slot_type& slot
)
{
 onClick.connect(slot);
}

void printCoordinates(long x, long y)
{
 std::cout << "(" << x << ", " << y << ")\n";
}

void f(Button& button)
{
 button.doOnClick(&printCoordinates);
}

The doOnClick method is now functionally equivalent to the connect method of the onClick signal, but the details of the
doOnClick method can be hidden in an implementation detail file.

Example: Document-View
Signals can be used to implement flexible Document-View architectures. The document will contain a signal to which each of the
views can connect. The following Document class defines a simple text document that supports mulitple views. Note that it stores
a single signal to which all of the views will be connected.

12

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class Document
{
public:
 typedef boost::signal<void (bool)> signal_t;
 typedef boost::signals::connection connection_t;

public:
 Document()
 {}

 connection_t connect(signal_t::slot_function_type subscriber)
 {
 return m_sig.connect(subscriber);
 }

 void disconnect(connection_t subscriber)
 {
 subscriber.disconnect();
 }

 void append(const char* s)
 {
 m_text += s;
 m_sig(true);
 }

 const std::string& getText() const
 {
 return m_text;
 }

private:
 signal_t m_sig;
 std::string m_text;
};

Next, we can define a View base class from which views can derive. This isn't strictly required, but it keeps the Document-View
logic separate from the logic itself. Note that the constructor just connects the view to the document and the destructor disconnects
the view.

13

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class View
{
public:
 View(Document& m)
 : m_document(m)
 {
 m_connection = m_document.connect(boost::bind(&View::refresh, this, _1));
 }

 virtual ~View()
 {
 m_document.disconnect(m_connection);
 }

 virtual void refresh(bool bExtended) const = 0;

protected:
 Document& m_document;

private:
 Document::connection_t m_connection;
};
 ↵

Finally, we can begin to define views. The following TextView class provides a simple view of the document text.

class TextView : public View
{
public:
 TextView(Document& doc)
 : View(doc)
 {}

 virtual void refresh(bool bExtended) const
 {
 std::cout << "TextView: " << m_document.getText() << std::endl;
 }
};

Alternatively, we can provide a view of the document translated into hex values using the HexView view:

class HexView : public View
{
public:
 HexView(Document& doc)
 : View(doc)
 {}

 virtual void refresh(bool bExtended) const
 {
 const std::string& s = m_document.getText();

 std::cout << "HexView:";

 for (std::string::const_iterator it = s.begin(); it != s.end(); ++it)
 std::cout << ' ' << std::hex << static_cast<int>(*it);

 std::cout << std::endl;
 }
};

14

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

To tie the example together, here is a simple main function that sets up two views and then modifies the document:

int main(int argc, char* argv[])
{
 Document doc;
 TextView v1(doc);
 HexView v2(doc);

 doc.append(argc == 2 ? argv[1] : "Hello world!");
 return 0;
}

The complete example source, contributed by Keith MacDonald, is available in libs/signals/example/doc_view.cpp.

Linking against the Signals library
Part of the Boost.Signals library is compiled into a binary library that must be linked into your application to use Signals. Please
refer to the Getting Started guide. You will need to link against the boost_signals library.

Reference

Header <boost/signal.hpp>

namespace boost {
template<typename R, typename T1, typename T2, ..., typename TN,

typename Combiner = last_value<R>, typename Group = int,
typename GroupCompare = std::less<Group>,
typename SlotFunction = functionN<R, T1, T2, ..., TN> >

class signalN;
template<typename Signature, typename Combiner = last_value<R>,

typename Group = int, typename GroupCompare = std::less<Group>,
typename SlotFunction = functionN<Signature> >

class signal;
namespace signals {

enum connect_position { at_front, at_back };
 }
}

15

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../libs/signals/example/doc_view.cpp
http://www.boost.org/doc/libs/release/doc/html/../../more/getting_started.html
http://www.boost.org/doc/libs/release/doc/html/../../boost/signal.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template signalN

boost::signalN — Set of safe multicast callback types.

Synopsis

// In header: <boost/signal.hpp>

template<typename R, typename T1, typename T2, ..., typename TN,
typename Combiner = last_value<R>, typename Group = int,
typename GroupCompare = std::less<Group>,
typename SlotFunction = functionN<R, T1, T2, ..., TN> >

class signalN : public signals::trackable,
private noncopyable // Exposition only

{
public:
// types
typedef typename Combiner::result_type result_type;
typedef Combiner combiner_type;
typedef Group group_type;
typedef GroupCompare group_compare_type;
typedef SlotFunction slot_function_type;
typedef slot<SlotFunction> slot_type;
typedef unspecified slot_result_type;
typedef unspecified slot_call_iterator;
typedef T1 argument_type; // If N == 1
typedef T1 first_argument_type; // If N == 2
typedef T2 second_argument_type; // If N == 2
typedef T1 arg1_type;
typedef T2 arg2_type;

 .
 .
 .

typedef TN argN_type;

// static constants
static const int arity = N;

// construct/copy/destruct
signalN(const combiner_type& = combiner_type(),

const group_compare_type& = group_compare_type());
~signalN();

// connection management
signals::connection
connect(const slot_type&, signals::connect_position = signals::at_back);
signals::connection
connect(const group_type&, const slot_type&,

 signals::connect_position = signals::at_back);
void disconnect(const group_type&);
template<typename Slot> void disconnect(const Slot&);
void disconnect_all_slots();
bool empty() const;

 std::size_t num_slots() const;

// invocation
 result_type operator()(arg1_type, arg2_type, ..., argN_type);

16

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 result_type operator()(arg1_type, arg2_type, ..., argN_type) const;

// combiner access
 combiner_type& combiner();

const combiner_type& combiner() const;
};

Description

The class template signalN covers several related classes signal0, signal1, signal2, etc., where the number suffix describes the
number of function parameters the signal and its connected slots will take. Instead of enumerating all classes, a single pattern signalN
will be described, where N represents the number of function parameters.

signalN public construct/copy/destruct

1.
signalN(const combiner_type& combiner = combiner_type(),

const group_compare_type& compare = group_compare_type());

Effects: Initializes the signal to contain no slots, copies the given combiner into internal storage, and stores the
given group comparison function object to compare groups.

Postconditions: this->empty()

2.
~signalN();

Effects: Disconnects all slots connected to *this.

signalN connection management

1.
signals::connection
connect(const slot_type& slot,
 signals::connect_position at = signals::at_back);
signals::connection
connect(const group_type& group, const slot_type& slot,
 signals::connect_position at = signals::at_back);

Effects: Connects the signal this to the incoming slot. If the slot is inactive, i.e., any of the trackable objects bound by
the slot call have been destroyed, then the call to connect is a no-op. If the second version of connect is invoked,
the slot is associated with the given group. The at parameter specifies where the slot should be connected:
at_front indicates that the slot will be connected at the front of the list or group of slots and at_back indicates
that the slot will be connected at the back of the list or group of slots.

Returns: A signals::connection object that references the newly-created connection between the signal and the
slot; if the slot is inactive, returns a disconnected connection.

Throws: This routine meets the strong exception guarantee, where any exception thrown will cause the slot to not be
connected to the signal.

Complexity: Constant time when connecting a slot without a group name or logarithmic in the number of groups when
connecting to a particular group.

Notes: It is unspecified whether connecting a slot while the signal is calling will result in the slot being called imme-
diately.

2.
void disconnect(const group_type& group);
template<typename Slot> void disconnect(const Slot& slot);

Effects: If the parameter is (convertible to) a group name, any slots in the given group are disconnected. Otherwise,
any slots equal to the given slot are disconnected.

Throws: Will not throw unless a user destructor or equality operator == throws. If either throws, not all slots may be
disconnected.

17

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity: If a group is given, O(lg g) + k where g is the number of groups in the signal and k is the number of slots in
the group. Otherwise, linear in the number of slots connected to the signal.

3.
void disconnect_all_slots();

Effects: Disconnects all slots connected to the signal.
Postconditions: this->empty().
Throws: If disconnecting a slot causes an exception to be thrown, not all slots may be disconnected.
Complexity: Linear in the number of slots known to the signal.
Notes: May be called at any time within the lifetime of the signal, including during calls to the signal's slots.

4.
bool empty() const;

Returns: true if no slots are connected to the signal, and false otherwise.
Throws: Will not throw.
Complexity: Linear in the number of slots known to the signal.
Rationale: Slots can disconnect at any point in time, including while those same slots are being invoked. It is therefore

possible that the implementation must search through a list of disconnected slots to determine if any slots are
still connected.

5.
std::size_t num_slots() const;

Returns: The number of slots connected to the signal
Throws: Will not throw.
Complexity: Linear in the number of slots known to the signal.
Rationale: Slots can disconnect at any point in time, including while those same slots are being invoked. It is therefore

possible that the implementation must search through a list of disconnected slots to determine how many slots
are still connected.

signalN invocation

1.
result_type operator()(arg1_type a1, arg2_type a2, ..., argN_type aN);
result_type operator()(arg1_type a1, arg2_type a2, ..., argN_type aN) const;

Effects: Invokes the combiner with a slot_call_iterator range [first, last) corresponding to the sequence of calls to
the slots connected to signal *this. Dereferencing an iterator in this range causes a slot call with the given set of
parameters (a1, a2, ..., aN), the result of which is returned from the iterator dereference operation.

Returns: The result returned by the combiner.
Throws: If an exception is thrown by a slot call, or if the combiner does not dereference any slot past some given slot, all

slots after that slot in the internal list of connected slots will not be invoked.
Notes: Only the slots associated with iterators that are actually dereferenced will be invoked. Multiple dereferences of the

same iterator will not result in multiple slot invocations, because the return value of the slot will be cached.

The const version of the function call operator will invoke the combiner as const, whereas the non-const version
will invoke the combiner as non-const.

Calling the function call operator may invoke undefined behavior if no slots are connected to the signal, depending
on the combiner used. The default combiner is well-defined for zero slots when the return type is void but is undefined
when the return type is any other type (because there is no way to synthesize a return value).

signalN combiner access

1.
combiner_type& combiner();
const combiner_type& combiner() const;

Returns: A reference to the stored combiner.

18

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Will not throw.

19

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template signal

boost::signal — Safe multicast callback.

Synopsis

// In header: <boost/signal.hpp>

template<typename Signature, // Function type R (T1, T2, ..., TN)
typename Combiner = last_value<R>,
typename Group = int,
typename GroupCompare = std::less<Group>,
typename SlotFunction = functionN<Signature> >

class signal : public signalN<R, T1, T2, ..., TN, Combiner, Group, GroupCompare, SlotFunction>
{
public:
// construct/copy/destruct
signal(const combiner_type& = combiner_type(),

const group_compare_type& = group_compare_type());
};

Description

Class template signal is a thin wrapper around the numbered class templates signal0, signal1, etc. It accepts a function type with N
arguments instead of N separate arguments, and derives from the appropriate signalN instantiation.

All functionality of this class template is in its base class signalN.

signal public construct/copy/destruct

1.
signal(const combiner_type& combiner = combiner_type(),

const group_compare_type& compare = group_compare_type());

Effects: Initializes the base class with the given combiner and comparison objects.

Header <boost/signals/slot.hpp>

namespace boost {
template<typename SlotFunction> class slot;

}

20

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/signals/slot.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template slot

boost::slot — Pass slots as function arguments.

Synopsis

// In header: <boost/signals/slot.hpp>

template<typename SlotFunction>
class slot {
public:
// construct/copy/destruct
template<typename Slot> slot(Slot);

};

Description

slot public construct/copy/destruct

1.
template<typename Slot> slot(Slot target);

Effects: Invokes visit_each (unqualified) to discover pointers and references to signals::trackable objects in
target.

Initializes this to contain the incoming slot target, which may be any function object with which a SlotFunction
can be constructed.

Header <boost/signals/trackable.hpp>

namespace boost {
namespace signals {

class trackable;
 }
}

21

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/signals/trackable.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class trackable

boost::signals::trackable — Enables safe use of multicast callbacks.

Synopsis

// In header: <boost/signals/trackable.hpp>

class trackable {
public:
// construct/copy/destruct
trackable();
trackable(const trackable&);

 trackable& operator=(const trackable&);
~trackable();

};

Description

The trackable class provides automatic disconnection of signals and slots when objects bound in slots (via pointer or reference)
are destroyed. The trackable class may only be used as a public base class for some other class; when used as such, that class may
be bound to function objects used as part of slots. The manner in which a trackable object tracks the set of signal-slot connections
it is a part of is unspecified.

The actual use of trackable is contingent on the presence of appropriate visit_each overloads for any type that may contain
pointers or references to trackable objects.

trackable public construct/copy/destruct

1.
trackable();

Effects: Sets the list of connected slots to empty.
Throws: Will not throw.

2.
trackable(const trackable& other);

Effects: Sets the list of connected slots to empty.
Throws: Will not throw.
Rationale: Signal-slot connections can only be created via calls to an explicit connect method, and therefore cannot be

created here when trackable objects are copied.

3.
trackable& operator=(const trackable& other);

Effects: Sets the list of connected slots to empty.
Returns: *this

Throws: Will not throw.
Rationale: Signal-slot connections can only be created via calls to an explicit connect method, and therefore cannot be

created here when trackable objects are copied.

4.
~trackable();

Effects: Disconnects all signal/slot connections that contain a pointer or reference to this trackable object that can be found
by visit_each.

22

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/signals/connection.hpp>

namespace boost {
namespace signals {

class connection;
void swap(connection&, connection&);
class scoped_connection;

 }
}

23

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/signals/connection.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class connection

boost::signals::connection — Query/disconnect a signal-slot connection.

Synopsis

// In header: <boost/signals/connection.hpp>

class connection {
public:
// construct/copy/destruct
connection();
connection(const connection&);

 connection& operator=(const connection&);

// connection management
void disconnect() const;
bool connected() const;

// blocking
void block(bool = true);
void unblock();
bool blocked() const;

// modifiers
void swap(const connection&);

// comparisons
bool operator==(const connection&) const;
bool operator<(const connection&) const;

};

// specialized algorithms
void swap(connection&, connection&);

Description

The connection class represents a connection between a Signal and a Slot. It is a lightweight object that has the ability to query
whether the signal and slot are currently connected, and to disconnect the signal and slot. It is always safe to query or disconnect a
connection.

connection public construct/copy/destruct

1.
connection();

Effects: Sets the currently represented connection to the NULL connection.
Postconditions: !this->connected().
Throws: Will not throw.

2.
connection(const connection& other);

Effects: this references the connection referenced by other.
Throws: Will not throw.

3.
connection& operator=(const connection& other);

Effects: this references the connection referenced by other.

24

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Will not throw.

connection connection management

1.
void disconnect() const;

Effects: If this->connected(), disconnects the signal and slot referenced by this; otherwise, this operation
is a no-op.

Postconditions: !this->connected().

2.
bool connected() const;

Returns: true if this references a non-NULL connection that is still active (connected), and false otherwise.
Throws: Will not throw.

connection blocking

1.
void block(bool should_block = true);

Requires: connected()

Postconditions: blocked() == should_block

Throws: Will not throw.

2.
void unblock();

Requires: connected()

Postconditions: !blocked()

Throws: Will not throw.

3.
bool blocked() const;

Returns: true if the associated slot is either disconnected or blocked, false otherwise.
Throws: Will not throw.

connection modifiers

1.
void swap(const connection& other);

Effects: Swaps the connections referenced in this and other.
Throws: Will not throw.

connection comparisons

1.
bool operator==(const connection& other) const;

Returns: true if this and other reference the same connection or both reference the NULL connection, and false oth-
erwise.

Throws: Will not throw.

2.
bool operator<(const connection& other) const;

Returns: true if the connection referenced by this precedes the connection referenced by other based on some unspecified
ordering, and false otherwise.

Throws: Will not throw.

25

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

connection specialized algorithms

1.
void swap(connection& x, connection& y);

Effects: x.swap(y)

Throws: Will not throw.

26

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class scoped_connection

boost::signals::scoped_connection — Limits a signal-slot connection lifetime to a particular scope.

Synopsis

// In header: <boost/signals/connection.hpp>

class scoped_connection : private noncopyable // Exposition only
{
public:
// construct/copy/destruct
scoped_connection(const connection&);
~scoped_connection();

// connection management
void disconnect() const;
bool connected() const;

};

Description

scoped_connection public construct/copy/destruct

1.
scoped_connection(const connection& other);

Effects: this references the connection referenced by other.
Throws: Will not throw.

2.
~scoped_connection();

Effects: If this->connected(), disconnects the signal-slot connection.

scoped_connection connection management

1.
void disconnect() const;

Effects: If this->connected(), disconnects the signal and slot referenced by this; otherwise, this operation
is a no-op.

Postconditions: !this->connected().

2.
bool connected() const;

Returns: true if this references a non-NULL connection that is still active (connected), and false otherwise.
Throws: Will not throw.

Header <boost/visit_each.hpp>

namespace boost {
template<typename Visitor, typename T>

void visit_each(const Visitor&, const T&, int);
}

27

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/visit_each.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Function template visit_each

boost::visit_each — Allow limited exploration of class members.

Synopsis

// In header: <boost/visit_each.hpp>

template<typename Visitor, typename T>
void visit_each(const Visitor& visitor, const T& t, int);

Description

The visit_each mechanism allows a visitor to be applied to every subobject in a given object. It is used by the Signals library to
discover signals::trackable objects within a function object, but other uses may surface if used universally (e.g., conservative
garbage collection). To fit within the visit_each framework, a visit_each overload must be supplied for each object type.

Effects: visitor(t), and for every subobject x of t:

• If x is a reference, visit_each(visitor, ref(x), 0)

• Otherwise, visit_each(visitor, x, 0)
Notes: The third parameter is long for the fallback version of visit_each and the argument supplied to this third paramter

must always be 0. The third parameter is an artifact of the widespread lack of proper function template ordering, and
will be removed in the future.

Library authors will be expected to add additional overloads that specialize the T argument for their classes, so that
subobjects can be visited.

Calls to visit_each are required to be unqualified, to enable argument-dependent lookup.

Header <boost/last_value.hpp>

namespace boost {
template<typename T> class last_value;

template<> class last_value<void>;
}

28

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/last_value.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template last_value

boost::last_value — Evaluate an InputIterator sequence and return the last value in the sequence.

Synopsis

// In header: <boost/last_value.hpp>

template<typename T>
class last_value {
public:
// types
typedef T result_type;

// invocation
template<typename InputIterator>

 result_type operator()(InputIterator, InputIterator) const;
};

Description

last_value invocation

1.
template<typename InputIterator>
 result_type operator()(InputIterator first, InputIterator last) const;

Requires: first != last

Effects: Dereferences every iterator in the sequence [first, last).
Returns: The result of dereferencing the iterator last-1.

Specializations

• Class last_value<void>

29

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class last_value<void>

boost::last_value<void> — Evaluate an InputIterator sequence.

Synopsis

// In header: <boost/last_value.hpp>

class last_value<void> {
public:
// types
typedef unspecified result_type;

// invocation
template<typename InputIterator>

 result_type operator()(InputIterator, InputIterator) const;
};

Description

last_value invocation

1.
template<typename InputIterator>
 result_type operator()(InputIterator first, InputIterator last) const;

Effects: Dereferences every iterator in the sequence [first, last).

Frequently Asked Questions
1. Don't noncopyable signal semantics mean that a class with a signal member will be noncopyable as well?

No. The compiler will not be able to generate a copy constructor or copy assignment operator for your class if it has a signal
as a member, but you are free to write your own copy constructor and/or copy assignment operator. Just don't try to copy the
signal.

2. Is Boost.Signals thread-safe?

No. Using Boost.Signals in a multithreaded concept is very dangerous, and it is very likely that the results will be less than
satisfying. Boost.Signals will support thread safety in the future.

3. How do I get Boost.Signals to work with Qt?

When building with Qt, the Moc keywords signals and slots are defined using preprocessor macros, causing programs
using Boost.Signals and Qt together to fail to compile.

For Qt 4.1 and later, This behavior can be turned off in Qt on a per-project or per-file basis with the no_keywords option.
This works with out-of-the-box builds of Boost and Qt. You do not need to re-configure, re-build, or duplicate existing libraries.
For a project where you want to use both Boost.Signals and Qt Signals and Slots, the relevant part of your .pro file might look
like this:

30

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CONFIG += no_keywords # so Qt won't #define any non-all-caps `keywords'
INCLUDEPATH += . /usr/local/include/boost-1_33_1/
macx:LIBS += /usr/local/lib/libboost_signals-1_33_1.a # ...your exact paths may vary

Now you can mix Boost.Signals and Qt Signals and Slots in the same files, and even within the same class or function. You
will have to use the upper-case versions of Qt macros in your own code. See the article A Deeper Look at Signals and Slots
[off-site] for more complete examples and a survey of the strengths of the two systems.

Older versions of Qt did not provide a reliable mechanism for avoiding these unfriendly, all lower-case ̀ keyword'-like macros.
Although this is a problem with Qt and not Boost.Signals, a user can use the two systems together with a little extra effort.
There are two ways to do this:

The first way involves defining the BOOST_SIGNALS_NAMESPACE macro to some other identifier (e.g., signalslib) when
building and using the Boost.Signals library. Then the namespace of the Boost.Signals library will be boost::BOOST_SIG-
NALS_NAMESPACE instead of boost::signals. To retain the original namespace name in translation units that do not interact
with Qt, you can use a namespace alias:

 namespace boost {
 namespace signals = BOOST_SIGNALS_NAMESPACE;
 }

The second way, provided by Frank Hess and improved by Niels Dekker, involves creating a header signalslib.hpp that
contains the following code:

#ifndef SIGNALSLIB_HPP_INCLUDED
#define SIGNALSLIB_HPP_INCLUDED

#if defined(signals) && defined(QOBJECTDEFS_H) && \
 !defined(QT_MOC_CPP)
undef signals
define signals signals
#endif

#include <boost/signal.hpp>
namespace boost
{
 namespace signalslib = signals;
}

#if defined(signals) && defined(QOBJECTDEFS_H) && \
 !defined(QT_MOC_CPP)
undef signals
// Restore the macro definition of "signals", as it was
// defined by Qt's <qobjectdefs.h>.
define signals protected
#endif

#endif

Use this header to include the Boost library, then refer to it in the namespace boost::signalslib. This option is often
preferable to the first option because it can be used without recompiling the Signals library binary.

31

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://scottcollins.net/articles/a-deeper-look-at-signals-and-slots.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Design Overview

Type Erasure
"Type erasure", where static type information is eliminated by the use of dynamically dispatched interfaces, is used extensively
within the Boost.Signals library to reduce the amount of code generated by template instantiation. Each signal must manage a list
of slots and their associated connections, along with a std::map to map from group identifiers to their associated connections.
However, instantiating this map for every token type, and perhaps within each translation unit (for some popular template instantiation
strategies) increase compile time overhead and space overhead.

To combat this so-called "template bloat", we use Boost.Function and Boost.Any to store unknown types and operations. Then, all
of the code for handling the list of slots and the mapping from slot identifiers to connections is factored into the class signal_base
that deals exclusively with the any and function objects, hiding the actual implementations using the well-known pimpl idiom.
The actual signalN class templates deal only with code that will change depending on the number of arguments or which is inherently
template-dependent (such as connection).

connection class
The connection class is central to the behavior of the Boost.Signals library. It is the only entity within the Boost.Signals system
that has knowledge of all objects that are associated by a given connection. To be specific, the connection class itself is merely a
thin wrapper over a shared_ptr to a basic_connection object.

connection objects are stored by all participants in the Signals system: each trackable object contains a list of connection
objects describing all connections it is a part of; similarly, all signals contain a set of pairs that define a slot. The pairs consist of a
slot function object (generally a Boost.Function object) and a connection object (that will disconnect on destruction). Finally, the
mapping from slot groups to slots is based on the key value in a std::multimap (the stored data in the std::multimap is the slot
pair).

Slot Call Iterator
The slot call iterator is conceptually a stack of iterator adaptors that modify the behavior of the underlying iterator through the list
of slots. The following table describes the type and behavior of each iterator adaptor required. Note that this is only a conceptual
model: the implementation collapses all these layers into a single iterator adaptor because several popular compilers failed to compile
the implementation of the conceptual model.

32

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

PurposeIterator Adaptor

An iterator through the list of slots connected to a signal. The
value_type of this iterator will be std::pair<any, con-
nection>, where the any contains an instance of the slot
function type.

Slot List Iterator

This filtering iterator adaptor filters out slots that have been
disconnected, so we never see a disconnected slot in later stages.

Filter Iterator Adaptor

The projection iterator adaptor returns a reference to the first
member of the pair that constitutes a connected slot (e.g., just
the boost::any object that holds the slot function).

Projection Iterator Adaptor

This transform iterator adaptor performs an any_cast to extract
a reference to the slot function with the appropriate slot function
type.

Transform Iterator Adaptor

This transform iterator adaptor calls the function object returned
by dereferencing the underlying iterator with the set of argu-
ments given to the signal itself, and returns the result of that slot
call.

Transform Iterator Adaptor

This iterator adaptor caches the result of dereferencing the un-
derlying iterator. Therefore, dereferencing this iterator multiple
times will only result in the underlying iterator being derefer-
enced once; thus, a slot can only be called once but its result
can be used multiple times.

Input Caching Iterator Adaptor

Iterates over calls to each slot.Slot Call Iterator

visit_each function template
The visit_each function template is a mechanism for discovering objects that are stored within another object. Function template
visit_each takes three arguments: an object to explore, a visitor function object that is invoked with each subobject, and the int
0.

The third parameter is merely a temporary solution to the widespread lack of proper function template partial ordering. The primary
visit_each function template specifies this third parameter type to be long, whereas any user specializations must specify their
third parameter to be of type int. Thus, even though a broken compiler cannot tell the ordering between, e.g., a match against a
parameter T and a parameter A<T>, it can determine that the conversion from the integer 0 to int is better than the conversion to
long. The ordering determined by this conversion thus achieves partial ordering of the function templates in a limited, but successful,
way. The following example illustrates the use of this technique:

template<typename> class A {};
template<typename T> void foo(T, long);
template<typename T> void foo(A<T>, int);
A<T> at;
foo(at, 0);

In this example, we assume that our compiler can not tell that A<T> is a better match than T, and therefore assume that the function
templates cannot be ordered based on that parameter. Then the conversion from 0 to int is better than the conversion from 0 to
long, and the second function template is chosen.

33

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Design Rationale

Choice of Slot Definitions
The definition of a slot differs amongst signals and slots libraries. Within Boost.Signals, a slot is defined in a very loose manner: it
can be any function object that is callable given parameters of the types specified by the signal, and whose return value is convertible
to the result type expected by the signal. However, alternative definitions have associated pros and cons that were considered prior
to the construction of Boost.Signals.

• Slots derive from a specific base class: generally a scheme such as this will require all user-defined slots to derive from some
library-specified Slot abstract class that defines a virtual function calling the slot. Adaptors can be used to convert a definition
such as this to a definition similar to that used by Boost.Signals, but the use of a large number of small adaptor classes containing
virtual functions has been found to cause an unacceptable increase in the size of executables (polymorphic class types require
more code than non-polymorphic types).

This approach does have the benefit of simplicity of implementation and user interface, from an object-oriented perspective.

• Slots constructed from a set of primitives: in this scheme the slot can have a limited set of types (often derived from a common
abstract base class) that are constructed from some library-defined set of primitives that often include conversions from free
function pointers and member function pointers, and a limited set of binding capabilities. Such an approach is reasonably simple
and cover most common cases, but it does not allow a large degree of flexibility in slot construction. Libraries for function object
composition have become quite advanced and it is out of the scope of a signals and slots library to encorporate such enhancements.
Thus Boost.Signals does not include argument binding or function object composition primitives, but instead provides a hook (via
the visit_each mechanism) that allows existing binder/composition libraries to provide the necessary information to Signals.

Users not satisfied with the slot definition choice may opt to replace the default slot function type with an alternative that meets their
specific needs.

User-level Connection Management
Users need to have fine control over the connection of signals to slots and their eventual disconnection. The approach taken by
Boost.Signals is to return a connection object that enables connected/disconnected query, manual disconnection, and an automatic
disconnection on destruction mode. Some other possible interfaces include:

• Pass slot to disconnect: in this interface model, the disconnection of a slot connected with sig.connect(slot) is performed
via sig.disconnect(slot). Internally, a linear search using slot comparison is performed and the slot, if found, is removed
from the list. Unfortunately, querying connectedness will generally also end up as linear-time operations. This model also fails
for implementation reasons when slots become more complex than simple function pointers, member function pointers and a
limited set of compositions and argument binders: to match the slot given in the call to disconnect with an existing slot we
would need to be able to compare arbitrary function objects, which is not feasible.

• Pass a token to disconnect: this approach identifies slots with a token that is easily comparable (e.g., a string), enabling slots to
be arbitrary function objects. While this approach is essentially equivalent to the approach taken by Boost.Signals, it is possibly
more error-prone for several reasons:

• Connections and disconnections must be paired, so the problem becomes similar to the problems incurred when pairing new
and delete for dynamic memory allocation. While errors of this sort would not be catastrophic for a signals and slots imple-
mentation, their detection is generally nontrivial.

• Tokens must be unique, otherwise two slots will have the same name and will be indistinguishable. In environments where
many connections will be made dynamically, name generation becomes an additional task for the user. Uniqueness of tokens
also results in an additional failure mode when attempting to connect a slot using a token that has already been used.

• More parameterization would be required, because the token type must be user-defined. Additional parameterization steepens
the learning curver and overcomplicates a simple interface.

34

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This type of interface is supported in Boost.Signals via the slot grouping mechanism. It augments the connection object-based
connection management scheme.

Combiner Interface
The Combiner interface was chosen to mimic a call to an algorithm in the C++ standard library. It is felt that by viewing slot call
results as merely a sequence of values accessed by input iterators, the combiner interface would be most natural to a proficient C++
programmer. Competing interface design generally required the combiners to be constructed to conform to an interface that would
be customized for (and limited to) the Signals library. While these interfaces are generally enable more straighforward implementation
of the signals & slots libraries, the combiners are unfortunately not reusable (either in other signals & slots libraries or within other
generic algorithms), and the learning curve is steepened slightly to learn the specific combiner interface.

The Signals formulation of combiners is based on the combiner using the "pull" mode of communication, instead of the more complex
"push" mechanism. With a "pull" mechanism, the combiner's state can be kept on the stack and in the program counter, because
whenever new data is required (i.e., calling the next slot to retrieve its return value), there is a simple interface to retrieve that data
immediately and without returning from the combiner's code. Contrast this with the "push" mechanism, where the combiner must
keep all state in class members because the combiner's routines will be invoked for each signal called. Compare, for example, a
combiner that returns the maximum element from calling the slots. If the maximum element ever exceeds 100, no more slots are to
be called.

PushPull

struct push_max {
 typedef int result_type;

 push_max() : max_value(), got_first(false) {}

 // returns false when we want to stop
 bool operator()(int result) {
 if (result > 100)
 return false;

 if (!got_first) {
 got_first = true;
 max_value = result;
 return true;
 }

 if (result > max_value)
 max_value = result;

 return true;
 }

 int get_value() const
 {
 if (!got_first)
 throw std::runtime_error("Empty!");
 return max_value;
 }

private:
 int max_value;
 bool got_first;
};

struct pull_max {
 typedef int result_type;

 template<typename InputIterator>
 result_type operator()(InputIterator first,
 InputIterator last)
 {
 if (first == last)
 throw std::runtime_error("Empty!");

 int max_value = *first++;
 while(first != last && *first <= 100) {
 if (*first > max_value)
 max_value = *first;
 ++first;
 }

 return max_value;
 }
};

35

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

There are several points to note in these examples. The "pull" version is a reusable function object that is based on an input iterator
sequence with an integer value_type, and is very straightforward in design. The "push" model, on the other hand, relies on an in-
terface specific to the caller and is not generally reusable. It also requires extra state values to determine, for instance, if any elements
have been received. Though code quality and ease-of-use is generally subjective, the "pull" model is clearly shorter and more reusable
and will often be construed as easier to write and understand, even outside the context of a signals & slots library.

The cost of the "pull" combiner interface is paid in the implementation of the Signals library itself. To correctly handle slot discon-
nections during calls (e.g., when the dereference operator is invoked), one must construct the iterator to skip over disconnected slots.
Additionally, the iterator must carry with it the set of arguments to pass to each slot (although a reference to a structure containing
those arguments suffices), and must cache the result of calling the slot so that multiple dereferences don't result in multiple calls.
This apparently requires a large degree of overhead, though if one considers the entire process of invoking slots one sees that the
overhead is nearly equivalent to that in the "push" model, but we have inverted the control structures to make iteration and dereference
complex (instead of making combiner state-finding complex).

Connection Interfaces: += operator
Boost.Signals supports a connection syntax with the form sig.connect(slot), but a more terse syntax sig += slot has been
suggested (and has been used by other signals & slots implementations). There are several reasons as to why this syntax has been
rejected:

• It's unnecessary: the connection syntax supplied by Boost.Signals is no less powerful that that supplied by the += operator. The
savings in typing (connect() vs. +=) is essentially negligible. Furthermore, one could argue that calling connect() is more
readable than an overload of +=.

• Ambiguous return type: there is an ambiguity concerning the return value of the += operation: should it be a reference to the
signal itself, to enable sig += slot1 += slot2, or should it return a connection for the newly-created signal/slot connection?

• Gateway to operators -=, +: when one has added a connection operator +=, it seems natural to have a disconnection operator -=.
However, this presents problems when the library allows arbitrary function objects to implicitly become slots, because slots are
no longer comparable.

The second obvious addition when one has operator+= would be to add a + operator that supports addition of multiple slots,
followed by assignment to a signal. However, this would require implementing + such that it can accept any two function objects,
which is technically infeasible.

trackable rationale
The trackable class is the primary user interface to automatic connection lifetime management, and its design affects users directly.
Two issues stick out most: the odd copying behavior of trackable, and the limitation requiring users to derive from trackable
to create types that can participate in automatic connection management.

trackable copying behavior

The copying behavior of trackable is essentially that trackable subobjects are never copied; instead, the copy operation is
merely a no-op. To understand this, we look at the nature of a signal-slot connection and note that the connection is based on the
entities that are being connected; when one of the entities is destroyed, the connection is destroyed. Therefore, when a trackable
subobject is copied, we cannot copy the connections because the connections don't refer to the target entity - they refer to the source
entity. This reason is dual to the reason signals are noncopyable: the slots connected to them are connected to that particular signal,
not the data contained in the signal.

Why derivation from trackable?

For trackable to work properly, there are two constraints:

• trackable must have storage space to keep track of all connections made to this object.

• trackable must be notified when the object is being destructed so that it can disconnect its connections.

36

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Clearly, deriving from trackable meets these two guidelines. We have not yet found a superior solution.

Comparison with other Signal/Slot implementations

libsigc++

libsigc++ is a C++ signals & slots library that originally started as part of an initiative to wrap the C interfaces to GTK libraries in
C++, and has grown to be a separate library maintained by Karl Nelson. There are many similarities between libsigc++ and
Boost.Signals, and indeed Boost.Signals was strongly influenced by Karl Nelson and libsigc++. A cursory inspection of each library
will find a similar syntax for the construction of signals and in the use of connections and automatic connection lifetime management.
There are some major differences in design that separate these libraries:

• Slot definitions: slots in libsigc++ are created using a set of primitives defined by the library. These primitives allow binding of
objects (as part of the library), explicit adaptation from the argument and return types of the signal to the argument and return
types of the slot (libsigc++ is, by default, more strict about types than Boost.Signals). A discussion of this approach with a com-
parison against the approach taken by Boost.Signals is given in Choice of Slot Definitions.

• Combiner/Marshaller interface: the equivalent to Boost.Signals combiners in libsigc++ are the marshallers. Marshallers are
similar to the "push" interface described in Combiner Interface, and a proper treatment of the topic is given there.

.NET delegates

Microsoft has introduced the .NET Framework and an associated set of languages and language extensions, one of which is the
delegate. Delegates are similar to signals and slots, but they are more limited than most C++ signals and slots implementations in
that they:

• Require exact type matches between a delegate and what it is calling.

• Only return the result of the last target called, with no option for customization.

• Must call a method with this already bound.

37

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://libsigc.sourceforge.net
http://www.gtk.org
http://www.microsoft.com
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Testsuite

Acceptance tests

If failing...DescriptionTypeTest

Ensure that calling connect with
a slot that has already been discon-
nected via deletion does not actually
connect to the slot.

rundead_slot_test.cpp

Test deletion of slots.rundeletion_test.cpp

Test slot group ordering.runordering_test.cpp

Basic test of signal/slot connections
and invocation using the
boost::signalN class templates.

runsignal_n_test.cpp

The boost::signal class tem-
plate may not be usable on your
compiler. However, the
boost::signalN class templates
may still be usable.

Basic test of signal/slot connections
and invocation using the
boost::signal class template.

runsignal_test.cpp

Test automatic lifetime manage-
ment using boost::trackable
objects.

runtrackable_test.cpp

38

Boost.Signals

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../libs/signals/test/dead_slot_test.cpp
../../libs/signals/test/deletion_test.cpp
../../libs/signals/test/ordering_test.cpp
../../libs/signals/test/signal_n_test.cpp
../../libs/signals/test/signal_test.cpp
../../libs/signals/test/trackable_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Signals
	Table of Contents
	Introduction
	Tutorial
	How to Read this Tutorial
	Compatibility Note
	Hello, World! (Beginner)
	Calling multiple slots
	Connecting multiple slots (Beginner)
	Ordering slot call groups (Intermediate)

	Passing values to and from slots
	Slot Arguments (Beginner)
	Signal Return Values (Advanced)

	Connection Management
	Disconnecting Slots (Beginner)
	Blocking Slots (Beginner)
	Scoped connections (Intermediate)
	Disconnecting equivalent slots (Intermediate)
	Automatic connection management (Intermediate)
	When can disconnections occur? (Intermediate)
	Passing slots (Intermediate)

	Example: Document-View
	Linking against the Signals library

	Reference
	Header <boost/signal.hpp>
	Class template signalN
	Class template signal

	Header <boost/signals/slot.hpp>
	Class template slot

	Header <boost/signals/trackable.hpp>
	Class trackable

	Header <boost/signals/connection.hpp>
	Class connection
	Class scoped_connection

	Header <boost/visit_each.hpp>
	Function template visit_each

	Header <boost/last_value.hpp>
	Class template last_value
	Class last_value<void>

	Frequently Asked Questions
	Design Overview
	Type Erasure
	connection class
	Slot Call Iterator
	visit_each function template

	Design Rationale
	Choice of Slot Definitions
	User-level Connection Management
	Combiner Interface
	Connection Interfaces: += operator
	trackable rationale
	trackable copying behavior
	Why derivation from trackable?

	Comparison with other Signal/Slot implementations
	libsigc++
	.NET delegates

	Testsuite
	Acceptance tests

