
Phoenix 2.0
Joel de Guzman

Dan Marsden
Copyright © 2002-2005 Joel de Guzman, Dan Marsden

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Preface ... 2
Introduction .. 3
Starter Kit ... 4

Values .. 4
References .. 5
Arguments .. 5
Composites ... 6
Lazy Operators .. 6
Lazy Statements .. 7
Construct, New, Delete, Casts ... 8
Lazy Functions .. 8
More ... 9

Basics .. 9
Organization .. 12
Actors .. 14
Primitives ... 15

Arguments .. 15
Values .. 17
References .. 18
Constant References ... 18
Nothing .. 18

Composite .. 19
Function ... 19
Operator ... 20
Statement .. 23
Object .. 29
Scope ... 31
Bind .. 36

Container .. 38
Algorithm ... 41
Inside Phoenix ... 44

Actors In Detail ... 44
Actor Example ... 48
Composites In Detail ... 48
Composing .. 50
Extending ... 53

Wrap Up ... 53
Acknowledgement .. 54
References .. 54

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Preface
Functional programming is so called because a program consists entirely of functions. The main program itself
is written as a function which receives the program's input as its argument and delivers the program's output as
its result. Typically the main function is defined in terms of other functions, which in turn are defined in terms of
still more functions until at the bottom level the functions are language primitives.

John Hughes-- Why Functional Programming Matters

Description
Phoenix enables Functional Programming (FP) in C++. The design and implementation of Phoenix is highly influenced by FC++
by Yannis Smaragdakis and Brian McNamara and the BLL (Boost Lambda Library) by Jaakko Jaarvi and Gary Powell. Phoenix is
a blend of FC++ and BLL using the implementation techniques used in the Spirit inline parser. Phoenix version 2, this version, will
probably be the last release of the library. Phoenix v2 will be the basis of the Phoenix and BLL merger.

Phoenix is a header only library. It is extremely modular by design. One can extract and use only a small subset of the full library,
literally tearing the library into small pieces, without fear that the pieces won't work anymore. The library is organized in highly in-
dependent modules and layers.

How to use this manual
The Phoenix library is organized in logical modules. This documentation provides a user's guide and reference for each module in
the library. A simple and clear code example is worth a hundred lines of documentation; therefore, the user's guide is presented with
abundant examples annotated and explained in step-wise manner. The user's guide is based on examples: lots of them.

As much as possible, forward information (i.e. citing a specific piece of information that has not yet been discussed) is avoided in
the user's manual portion of each module. In many cases, though, it is unavoidable that advanced but related topics not be interspersed
with the normal flow of discussion. To alleviate this problem, topics categorized as "advanced" may be skipped at first reading.

Some icons are used to mark certain topics indicative of their relevance. These icons precede some text to indicate:

2

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://spirit.sourceforge.net
http://www.boost.org/libs/lambda/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 1. Icons

MeaningNameIcon

Information provided is auxiliary but will
give the reader a deeper insight into a
specific topic. May be skipped.

Note

Information provided is of utmost import-
ance.

Alert

A potentially useful and helpful piece of
information.

Tip

This documentation is automatically generated by Spirit QuickBook documentation tool. QuickBook can be found in the Spirit Re-
pository.

Support
Please direct all questions to Spirit's mailing list. You can subscribe to the Spirit Mailing List. The mailing list has a searchable
archive. A search link to this archive is provided in Spirit's home page. You may also read and post messages to the mailing list
through Spirit General NNTP news portal (thanks to Gmane). The news group mirrors the mailing list. Here is a link to the archives:
http://news.gmane.org/gmane.comp.parsers.spirit.general.

...To my dear daughter, Phoenix

Introduction

The Phoenix library enables FP techniques such as higher order functions, lambda (unnamed functions), currying (partial function
application) and lazy evaluation in C++. The focus is more on usefulness and practicality than purity, elegance and strict adherence
to FP principles.

FP is a programming discipline that is not at all tied to a specific language. FP as a programming discipline can, in fact, be applied
to many programming languages. In the realm of C++ for instance, we are seeing more FP techniques being applied. C++ is sufficiently
rich to support at least some of the most important facets of FP. C++ is a multiparadigm programming language. It is not only pro-
cedural. It is not only object oriented. Beneath the core of the standard C++ library, a closer look into STL gives us a glimpse of FP
already in place. It is obvious that the authors of STL know and practice FP. In the near future, we shall surely see more FP trickle
down into the mainstream.

3

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net/repository/applications/show_contents.php
http://spirit.sourceforge.net/repository/applications/show_contents.php
https://lists.sourceforge.net/lists/listinfo/spirit-general
http://spirit.sourceforge.net
news://news.gmane.org/gmane.comp.spirit.general
http://www.gmane.org
http://news.gmane.org/gmane.comp.parsers.spirit.general
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The truth is, most of the FP techniques can coexist quite well with the standard object oriented and imperative programming paradigms.
When we are using STL algorithms and functors (function objects) for example, we are already doing FP. Phoenix is an evolutionary
next step.

Starter Kit
Most "quick starts" only get you a few blocks from where you are. From there, you are on your own. Yet, typically, you'd want to
get to the next city. This starter kit shall be as minimal as possible, yet packed as much power as possible.

So you are busy and always on the go. You do not wish to spend a lot of time studying the library. You wish to be spared the details
for later when you need it. For now, all you need to do is to get up to speed as quickly as possible and start using the library. If this
is the case, this is the right place to start.

This chapter is by no means a thorough discourse of the library. For more information on Phoenix, please take some time to read
the rest of the User's Guide. Yet, if you just want to use the library quickly, now, this chapter will probably suffice. Rather than
taking you to the details of the library, we shall try to provide you with annotated exemplars instead. Hopefully, this will get you
into high gear quickly.

Functors everywhere
Phoenix is built on function objects (functors). The functor is the main building block. We compose functors to build more complex
functors... to build more complex functors... and so on. Almost everything is a functor.

Note

Functors are so ubiquitous in Phoenix that, in the manual, the words "functor" and "function" are used interchangeably.

Values
Values are functions! Examples:

val(3)
val("Hello, World")

The first evaluates to a nullary function (a function taking no arguments) that returns an int, 3. The second evaluates to a nullary
function that returns a char const(&)[13], "Hello, World".

Lazy Evaluation
Confused? val(3) is a unary function, you say? Yes it is. However, read carefully: "evaluates to a nullary function". val(3)
evaluates to (returns) a nullary function. Aha! val(3) returns a function! So, since val(3) returns a function, you can invoke it.
Example:

cout << val(3)() << endl;

(See values.cpp)

 Learn more about values here.

4

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/values.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The second function call (the one with no arguments) calls the nullary function which then returns 3. The need for a second function
call is the reason why the function is said to be Lazily Evaluated. The first call doesn't do anything. You need a second call to finally
evaluate the thing. The first call lazily evaluates the function; i.e. doesn't do anything and defers the evaluation for later.

Callbacks
It may not be immediately apparent how lazy evaluation can be useful by just looking at the example above. Putting the first and
second function call in a single line is really not very useful. However, thinking of val(3) as a callback function (and in most cases
they are actually used that way), will make it clear. Example:

template <typename F>
void print(F f)
{
 cout << f() << endl;
}

int
main()
{
 print(val(3));
 print(val("Hello World"));

return 0;
}

(See callback.cpp)

References
References are functions. They hold a reference to a value stored somehere. For example, given:

int i = 3;
char const* s = "Hello World";

we create references to i and s this way:

ref(i)
ref(s)

Like val, the expressions above evaluates to a nullary function; the first one returning an int&, and the second one returning a char
const*&.

(See references.cpp)

 Learn more about references here.

Arguments
Arguments are also functions? You bet!

Until now, we have been dealing with expressions returning a nullary function. Arguments, on the other hand, evaluate to an N-ary
function. An argument represents the Nth argument. There are a few predefined arguments arg1, arg2, arg3, arg4 and so on (and it's
BLL counterparts: _1, _2, _3, _4 and so on). Examples:

5

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/callback.cpp
http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/references.cpp
http://www.boost.org/libs/lambda/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

arg1 // one-or-more argument function that returns its first argument
arg2 // two-or-more argument function that returns its second argument
arg3 // three-or-more argument function that returns its third argument

argN returns the Nth argument. Examples:

int i = 3;
char const* s = "Hello World";
cout << arg1(i) << endl; // prints 3
cout << arg2(i, s) << endl; // prints "Hello World"

(See arguments.cpp)

 Learn more about arguments here.

Composites
What we have seen so far, are what are called primitives. You can think of primitives (such as values, references and arguments)
as atoms.

Things start to get interesting when we start composing primitives to form composites. The composites can, in turn, be composed
to form even more complex composites.

Lazy Operators
You can use the usual set of operators to form composites. Examples:

arg1 * arg1
ref(x) = arg1 + ref(z)
arg1 = arg2 + (3 * arg3)
ref(x) = arg1[arg2] // assuming arg1 is indexable and arg2 is a valid index

Note the expression: 3 * arg3. This expression is actually a short-hand equivalent to: val(3) * arg3. In most cases, like above,
you can get away with it. But in some cases, you will have to explicitly wrap your values in val. Rules of thumb:

• In a binary expression (e.g. 3 * arg3), at least one of the operands must be a phoenix primitive or composite.

• In a unary expression (e.g. arg1++), the single operand must be a phoenix primitive or composite.

If these basic rules are not followed, the result is either in error, or is immediately evaluated. Some examples:

6

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/arguments.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ref(x) = 123 // lazy
x = 123 // immediate

ref(x)[0] // lazy
x[0] // immediate

ref(x)[ref(i)] // lazy
ref(x)[i] // lazy (equivalent to ref(x)[val(i)])
x[ref(i)] // illegal (x is not a phoenix primitive or composite)
ref(x[ref(i)]) // illegal (x is not a phoenix primitive or composite)

 Learn more about operators here.

First Practical Example
We've covered enough ground to present a real world example. We want to find the first odd number in an STL container. Normally
we use a functor (function object) or a function pointer and pass that in to STL's find_if generic function:

Write a function:

bool
is_odd(int arg1)
{

return arg1 % 2 == 1;
}

Pass a pointer to the function to STL's find_if algorithm:

find_if(c.begin(), c.end(), &is_odd)

Using Phoenix, the same can be achieved directly with a one-liner:

find_if(c.begin(), c.end(), arg1 % 2 == 1)

The expression arg1 % 2 == 1 automagically creates a functor with the expected behavior. In FP, this unnamed function is called
a lambda function. Unlike the function pointer version, which is monomorphic (expects and works only with a fixed type int argument),
the Phoenix version is fully polymorphic and works with any container (of ints, of longs, of bignum, etc.) as long as its elements
can handle the arg1 % 2 == 1 expression.

(See find_if.cpp)

 ...That's it, we're done. Well if you wish to know a little bit more, read on...

Lazy Statements
Lazy statements? Sure. There are lazy versions of the C++ statements we all know and love. For example:

7

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/find_if.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

if_(arg1 > 5)
 cout << arg1

Say, for example, we wish to print all the elements that are greater than 5 (separated by a comma) in a vector. Here's how we write
it:

for_each(v.begin(), v.end(),
 if_(arg1 > 5)

[
 cout << arg1 << ", "

]
);

(See if.cpp)

 Learn more about statements here.

Construct, New, Delete, Casts
You'll probably want to work with objects. There are lazy versions of constructor calls, new, delete and the suite of C++ casts.
Examples:

construct<std::string>(arg1, arg2) // constructs a std::string from arg1, arg2
new_<std::string>(arg1, arg2) // makes a new std::string from arg1, arg2
delete_(arg1) // deletes arg1 (assumed to be a pointer)
static_cast_<int*>(arg1) // static_cast's arg1 to an int*

Note

Take note that, by convention, names that conflict with C++ reserved words are appended with a single trailing underscore
'_'

 Learn more about this here.

Lazy Functions
As you write more lambda functions, you'll notice certain patterns that you wish to refactor as reusable functions. When you reach
that point, you'll wish that ordinary functions can co-exist with phoenix functions. Unfortunately, the immediate nature of plain C++
functions make them incompatible.

Lazy functions are your friends. The library provides a facility to make lazy functions. The code below is a rewrite of the is_odd
function using the facility:

8

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/if.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct is_odd_impl
{

template <typename Arg>
struct result
{

typedef bool type;
};

template <typename Arg>
bool operator()(Arg arg1) const
{

return arg1 % 2 == 1;
}

};

function<is_odd_impl> is_odd;

Things to note:
• result is a nested metafunction that reflects the return type of the function (in this case, bool). This makes the function fully

polymorphic: It can work with arbitrary Arg types.

• There are as many Args in the result metafunction as in the actual operator().

• is_odd_impl implements the function.

• is_odd, an instance of function<is_odd_impl>, is the lazy function.

Now, is_odd is a truly lazy function that we can use in conjunction with the rest of phoenix. Example:

find_if(c.begin(), c.end(), is_odd(arg1));

(See function.cpp)

Predefined Lazy Functions
The library is chock full of STL savvy, predefined lazy functions covering the whole of the STL containers, iterators and algorithms.
For example, there are lazy versions of container related operations such as assign, at, back, begin, pop_back, pop_front, push_back,
push_front, etc. (See Container).

More
As mentioned earlier, this chapter is not a thorough discourse of the library. It is meant only to cover enough ground to get you into
high gear as quickly as possible. Some advanced stuff is not discussed here (e.g. Scopes); nor are features that provide alternative
(short-hand) ways to do the same things (e.g. Bind vs. Lazy Functions).

 ...If you still wish to learn more, the read on...

Basics
Almost everything is a function in the Phoenix library that can be evaluated as f(a1, a2, ..., an), where n is the function's
arity, or number of arguments that the function expects. Operators are also functions. For example, a + b is just a function with
arity == 2 (or binary). a + b is the same as add(a, b), a + b + c is the same as add(add(a, b), c).

9

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/function.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

Amusingly, functions may even return functions. We shall see what this means in a short while.

Partial Function Application
Think of a function as a black box. You pass arguments and it returns something back. The figure below depicts the typical scenario.

A fully evaluated function is one in which all the arguments are given. All functions in plain C++ are fully evaluated. When you call
the sin(x) function, you have to pass a number x. The function will return a result in return: the sin of x. When you call the add(x,
y) function, you have to pass two numbers x and y. The function will return the sum of the two numbers. The figure below is a fully
evaluated add function.

A partially applied function, on the other hand, is one in which not all the arguments are supplied. If we are able to partially apply
the function add above, we may pass only the first argument. In doing so, the function does not have all the required information it
needs to perform its task to compute and return a result. What it returns instead is another function, a lambda function --another
black box. Unlike the original add function which has an arity of 2, the resulting lambda function has an arity of 1. Why? because
we already supplied part of the input: 2

Now, when we shove in a number into our lambda function, it will return 2 plus whatever we pass in. The lambda function essentially
remembers 1) the original function, add, and 2) the partial input, 2. The figure below illustrates a case where we pass 3 to our lambda
function, which then returns 5:

Obviously, partially applying the add function, as we see above, cannot be done directly in C++ where we are expected to supply
all the arguments that a function expects. That's where the Phoenix library comes in. The library provides the facilities to do partial
function application.

STL and higher order functions
So, what's all the fuss? What makes partial function application so useful? Recall our original example in the previous section:

10

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

find_if(c.begin(), c.end(), arg1 % 2 == 1)

The expression arg1 % 2 == 1 evaluates to a lambda function. arg1 is a placeholder for an argument to be supplied later. Hence,
since there's only one unsupplied argument, the lambda function has an arity 1. It just so happens that find_if supplies the unsupplied
argument as it loops from c.begin() to c.end().

Note

Higher order functions are functions which can take other functions as arguments, and may also return functions as
results. Higher order functions are functions that are treated like any other objects and can be used as arguments and
return values from functions.

Lazy Evaluation
In Phoenix, to put it more accurately, function evaluation has two stages:

1. Partial application

2. Final evaluation

The first stage is handled by a set of generator functions. These are your front ends (in the client's perspective). These generators
create (through partial function application), higher order functions that can be passed on just like any other function pointer or
function object. The second stage, the actual function call, can be invoked or executed anytime in the future, or not at all; hence
"lazy".

If we look more closely, the first step involves partial function application:

arg1 % 2 == 1

The second step is the actual function invocation (done inside the find_if function. These are the back-ends (often, the final invoc-
ation is never actually seen by the client). In our example, the find_if, if we take a look inside, we'll see something like:

template <class InputIterator, class Predicate>
InputIterator
find_if(InputIterator first, InputIterator last, Predicate pred)
{

while (first != last && !pred(*first)) // <--- The lambda function is called here
++first; // passing in *first

return first;
}

Again, typically, we, as clients, see only the first step. However, in this document and in the examples and tests provided, don't be
surprised to see the first and second steps juxtaposed in order to illustrate the complete semantics of Phoenix expressions. Examples:

int x = 1;
int y = 2;

cout << (arg1 % 2 == 1)(x) << endl; // prints 1 or true
cout << (arg1 % 2 == 1)(y) << endl; // prints 0 or false

Forwarding Function Problem
Usually, we, as clients, write the call-back functions while libraries (such as STL) provide the callee (e.g. find_if). In case the role
is reversed, e.g. if you have to write an STL algorithm that takes in a predicate, or develop a GUI library that accepts event handlers,
you have to be aware of a little known problem in C++ called the "Forwarding Function Problem".

11

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Look again at the code above:

(arg1 % 2 == 1)(x)

Notice that, in the second-stage (the final evaluation), we used a variable x. Be aware that the second stage cannot accept non-const
temporaries and literal constants. Hence, this will fail:

(arg1 % 2 == 1)(123) // Error!

Disallowing non-const rvalues partially solves the "Forwarding Function Problem" but prohibits code like above.

Polymorphic Functions
Unless otherwise noted, Phoenix generated functions are fully polymorphic. For instance, the add example above can apply to integers,
floating points, user defined complex numbers or even strings. Example:

std::string h("Hello");
char const* w = " World";
std::string r = add(arg1, arg2)(h, w);

evaluates to std::string("Hello World"). The observant reader might notice that this function call in fact takes in heterogeneous
arguments where arg1 is of type std::string and arg2 is of type char const*. add still works because the C++ standard library
allows the expression a + b where a is a std::string and b is a char const*.

Organization
Care and attention to detail was given, painstakingly, to the design and implementation of Phoenix.

The library is organized in four layers:

The modules are orthogonal, with no cyclic dependencies. Lower layers do not depend on higher layers. Modules in a layer do not
depend on other modules in the same layer. This means, for example, that Bind can be completely discarded if it is not required; or
one could perhaps take out Operator and Statement and just use Function, which may be desireable in a pure FP application.

The library has grown from the original Phoenix but still comprises only header files. There are no object files to link against.

Core
The lowest two layers comprise the core.

The Actor is the main concept behind the library. Lazy functions are abstracted as actors. There are only 2 kinds of actors:

1. Primitives

12

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2. Composites

Primitives provide the basic building blocks of functionality within Phoenix. Composites are used to combine these primitives to-
gether to provide more powerful functionality.

Composites are composed of zero or more actors. Each actor in a composite can again be another composite.

Table 2. Modules

DescriptionModule

Lazy functions support (e.g. add)Function

Lazy operators support (e.g. +)Operator

Lazy statments (e.g. if_, while_)Statement

Lazy casts (e.g. static_cast_), object creation destruction
(e.g. new_, delete_)

Object

Support for scopes, local variables and lambda-lambdaScope

Lazy functions from free functions, member functions or mem-
ber variables.

Bind

Set of predefined "lazy" functions that work on STL containers
and sequences (e.g. push_back).

Container

Set of predefined "lazy" versions of the STL algorithms (e.g.
find_if).

Algorithm

Each module is defined in a header file with the same name. For example, the core module is defined in <boost/spir-
it/home/phoenix/core.hpp>.

13

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3. Includes

FileModule

#include <boost/spirit/home/phoenix/core.hpp>Core

#include <boost/spirit/home/phoenix/func-

tion.hpp>

Function

#include <boost/spirit/home/phoenix/operat-

or.hpp>

Operator

#include <boost/spirit/home/phoenix/state-

ment.hpp>

Statement

#include <boost/spirit/home/phoenix/object.hpp>Object

#include <boost/spirit/home/phoenix/scope.hpp>Scope

#include <boost/spirit/home/phoenix/bind.hpp>Bind

#include <boost/spirit/home/phoenix/contain-

er.hpp>

Container

#include <boost/spirit/home/phoenix/al-

gorithm.hpp>

Algorithm

 Finer grained include files are available per feature; see the succeeding sections.

Actors
The Actor is the main concept behind the library. Actors are function objects. An actor can accept 0 to PHOENIX_LIMIT arguments.

Note

You can set PHOENIX_LIMIT, the predefined maximum arity an actor can take. By default, PHOENIX_LIMIT is set to
10.

Phoenix supplies an actor class template whose specializations model the Actor concept. actor has one template parameter, Eval,
that supplies the smarts to evaluate the resulting function.

14

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Eval>
struct actor : Eval
{
 return_type

operator()() const;

template <typename T0>
 return_type

operator()(T0& _0) const;

template <typename T0, typename T1>
 return_type

operator()(T0& _0, T1& _1) const;

//...
};

The actor class accepts the arguments through a set of function call operators for 0 to PHOENIX_LIMIT arities (Don't worry about
the details, for now. Note, for example, that we skimp over the details regarding return_type). The arguments are then forwarded
to the actor's Eval for evaluation.

Primitives
Actors are composed to create more complex actors in a tree-like hierarchy. The primitives are atomic entities that are like the leaves
in the tree. Phoenix is extensible. New primitives can be added anytime. Right out of the box, there are only a few primitives. This
section shall deal with these preset primitives.

Arguments

#include <boost/spirit/home/phoenix/core/argument.hpp>

We use an instance of:

actor<argument<N> >

to represent the Nth function argument. The argument placeholder acts as an imaginary data-bin where a function argument will be
placed.

Predefined Arguments
There are a few predefined instances of actor<argument<N> > named arg1..argN, and its BLL counterpart _1.._N. (where N is
a predefined maximum).

Here are some sample preset definitions of arg1..argN

actor<argument<0> > const arg1 = argument<0>();
actor<argument<1> > const arg2 = argument<1>();
actor<argument<2> > const arg3 = argument<2>();

and its BLL _1.._N style counterparts:

15

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/lambda/doc/index.html
http://www.boost.org/libs/lambda/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

actor<argument<0> > const _1 = argument<0>();
actor<argument<1> > const _2 = argument<1>();
actor<argument<2> > const _3 = argument<2>();

Note

You can set PHOENIX_ARG_LIMIT, the predefined maximum placeholder index. By default, PHOENIX_ARG_LIMIT
is set to PHOENIX_LIMIT (See Actors).

User Defined Arguments
When appropriate, you can define your own argument<N> names. For example:

actor<argument<0> > x; // note zero based index

x may now be used as a parameter to a lazy function:

add(x, 6)

which is equivalent to:

add(arg1, 6)

Evaluating an Argument
An argument, when evaluated, selects the Nth argument from the those passed in by the client.

For example:

char c = 'A';
int i = 123;
const char* s = "Hello World";

cout << arg1(c) << endl; // Get the 1st argument: c
cout << arg1(i, s) << endl; // Get the 1st argument: i
cout << arg2(i, s) << endl; // Get the 2nd argument: s

will print out:

A
123
Hello World

Extra Arguments
In C and C++, a function can have extra arguments that are not at all used by the function body itself. These extra arguments are
simply ignored.

Phoenix also allows extra arguments to be passed. For example, recall our original add function:

16

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

add(arg1, arg2)

We know now that partially applying this function results to a function that expects 2 arguments. However, the library is a bit more
lenient and allows the caller to supply more arguments than is actually required. Thus, add actually allows 2 or more arguments.
For instance, with:

add(arg1, arg2)(x, y, z)

the third argument z is ignored. Taking this further, in-between arguments are also ignored. Example:

add(arg1, arg5)(a, b, c, d, e)

Here, arguments b, c, and d are ignored. The function add takes in the first argument (arg1) and the fifth argument (arg5).

Note

There are a few reasons why enforcing strict arity is not desireable. A case in point is the callback function. Typical
callback functions provide more information than is actually needed. Lambda functions are often used as callbacks.

Values

#include <boost/spirit/home/phoenix/core/value.hpp>

Whenever we see a constant in a partially applied function, an

actor<value<T> >

(where T is the type of the constant) is automatically created for us. For instance:

add(arg1, 6)

Passing a second argument, 6, an actor<value<int> > is implicitly created behind the scenes. This is also equivalent to:

add(arg1, val(6))

val(x) generates an actor<value<T> > where T is the type of x. In most cases, there's no need to explicitly use val, but, as we'll
see later on, there are situations where this is unavoidable.

Evaluating a Value
Like arguments, values are also actors. As such, values can be evaluated. Invoking a value gives the value's identity. Example:

cout << val(3)() << val("Hello World")();

prints out "3 Hello World".

17

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

References

#include <boost/spirit/home/phoenix/core/reference.hpp>

Values are immutable constants. Attempting to modify a value will result in a compile time error. When we want the function to
modify the parameter, we use a reference instead. For instance, imagine a lazy function add_assign:

void add_assign(T& x, T y) { x += y; } // pseudo code

Here, we want the first function argument, x, to be mutable. Obviously, we cannot write:

add_assign(1, 2) // error first argument is immutable

In C++, we can pass in a reference to a variable as the first argument in our example above. Yet, by default, the library forces arguments
passed to partially applied functions functions to be immutable values (see Values). To achieve our intent, we use:

actor<reference<T> >

This is similar to actor<value<T> > above but instead holds a reference to a variable.

We normally don't instantiate actor<reference<T> > objects directly. Instead we use ref. For example (where i is an int
variable):

add_assign(ref(i), 2)

Evaluating a Reference
References are actors. Hence, references can be evaluated. Such invocation gives the references's identity. Example:

int i = 3;
char const* s = "Hello World";
cout << ref(i)() << ref(s)();

prints out "3 Hello World"

Constant References

#include <boost/spirit/home/phoenix/core/reference.hpp>

Another free function cref(cv) may also be used. cref(cv) creates an actor<reference<T const&> > object. This is similar
to actor<value<T> > but when the data to be passed as argument to a function is heavy and expensive to copy by value, the
cref(cv) offers a lighter alternative.

Nothing

#include <boost/spirit/home/phoenix/core/nothing.hpp>

Finally, the actor<null_actor> does nothing; (a "bum", if you will :-). There's a sole actor<null_actor> instance named
"nothing". This actor is actually useful in situations where we don't want to do anything. (See for_ Statement for example).

18

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Composite
Actors may be combined in a multitude of ways to form composites. Composites are actors that are composed of zero or more actors.
Composition is hierarchical. An element of the composite can be a primitive or again another composite. The flexibility to arbitrarily
compose hierarchical structures allows us to form intricate constructions that model complex functions, statements and expressions.

A composite is-a tuple of 0..N actors. N is the predefined maximum actors a composite can take.

Note

You can set PHOENIX_COMPOSITE_LIMIT, the predefined maximum actors a composite can take. By default,
PHOENIX_COMPOSITE_LIMIT is set to PHOENIX_LIMIT (See Actors).

As mentioned, each of the actors A0..AN can, in turn, be another composite, since a composite is itself an actor. This makes the
composite a recursive structure. The actual evaluation is handled by a composite specific eval policy.

Function

#include <boost/spirit/home/phoenix/function/function.hpp>

The function class template provides a mechanism for implementing lazily evaluated functions. Syntactically, a lazy function
looks like an ordinary C/C++ function. The function call looks familiar and feels the same as ordinary C++ functions. However,
unlike ordinary functions, the actual function execution is deferred.

Unlike ordinary function pointers or functor objects that need to be explicitly bound through the bind function (see Bind), the argument
types of these functions are automatically lazily bound.

In order to create a lazy function, we need to implement a model of the FunctionEval concept. For a function that takes N arguments,
a model of FunctionEval must provide:

• An operator() that implements that takes N arguments, and implements the function logic.

• A nested metafunction result<A1, ... AN> that takes the types of the N arguments to the function and returns the result type
of the function. (There is a special case for function objects that accept no arguments. Such nullary functors are only required to
define a typedef result_type that reflects the return type of its operator()).

For example, the following type implements the FunctionEval concept, in order to provide a lazy factorial function:

struct factorial_impl
{

template <typename Arg>
struct result
{

typedef Arg type;
};

template <typename Arg>
 Arg operator()(Arg n) const

{
return (n <= 0) ? 1 : n * this->operator()(n-1);

}
};

(See factorial.cpp)

Having implemented the factorial_impl type, we can declare and instantiate a lazy factorial function this way:

19

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/factorial.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

function<factorial_impl> factorial;

Invoking a lazy function such as factorial does not immediately execute the function object factorial_impl. Instead, an actor
object is created and returned to the caller. Example:

factorial(arg1)

does nothing more than return an actor. A second function call will invoke the actual factorial function. Example:

int i = 4;
cout << factorial(arg1)(i);

will print out "24".

Take note that in certain cases (e.g. for function objects with state), an instance of the model of FunctionEval may be passed on to
the constructor. Example:

function<factorial_impl> factorial(ftor);

where ftor is an instance of factorial_impl (this is not necessary in this case as factorial_impl does not require any state).

Take care though when using function objects with state because they are often copied repeatedly, and state may change
in one of the copies, rather than the original.

Operator
This facility provides a mechanism for lazily evaluating operators. Syntactically, a lazy operator looks and feels like an ordinary
C/C++ infix, prefix or postfix operator. The operator application looks the same. However, unlike ordinary operators, the actual
operator execution is deferred. Samples:

arg1 + arg2
1 + arg1 * arg2
1 / -arg1
arg1 < 150

We have seen the lazy operators in action (see Quick Start). Let's go back and examine them a little bit further:

find_if(c.begin(), c.end(), arg1 % 2 == 1)

Through operator overloading, the expression arg1 % 2 == 1 actually generates an actor. This actor object is passed on to STL's
find_if function. From the viewpoint of STL, the composite is simply a function object expecting a single argument of the containers
value_type. For each element in c, the element is passed on as an argument arg1 to the actor (function object). The actor checks if
this is an odd value based on the expression arg1 % 2 == 1 where arg1 is replaced by the container's element.

Like lazy functions (see function), lazy operators are not immediately executed when invoked. Instead, an actor (see actors) object
is created and returned to the caller. Example:

(arg1 + arg2) * arg3

does nothing more than return an actor. A second function call will evaluate the actual operators. Example:

20

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int i = 4, j = 5, k = 6;
cout << ((arg1 + arg2) * arg3)(i, j, k);

will print out "54".

Operator expressions are lazily evaluated following four simple rules:

1. A binary operator, except ->* will be lazily evaluated when at least one of its operands is an actor object (see actors).

2. Unary operators are lazily evaluted if their argument is an actor object.

3. Operator ->* is lazily evaluted if the left hand argument is an actor object.

4. The result of a lazy operator is an actor object that can in turn allow the applications of rules 1 and 2.

For example, to check the following expression is lazily evaluated:

-(arg1 + 3 + 6)

1. Following rule 1, arg1 + 3 is lazily evaluated since arg1 is an actor (see primitives).

2. The result of this arg1 + 3 expression is an actor object, following rule 4.

3. Continuing, arg1 + 3 + 6 is again lazily evaluated. Rule 2.

4. By rule 4 again, the result of arg1 + 3 + 6 is an actor object.

5. As arg1 + 3 + 6 is an actor, -(arg1 + 3 + 6) is lazily evaluated. Rule 2.

Lazy-operator application is highly contagious. In most cases, a single argN actor infects all its immediate neighbors within a group
(first level or parenthesized expression).

Note that at least one operand of any operator must be a valid actor for lazy evaluation to take effect. To force lazy evaluation of an
ordinary expression, we can use ref(x), val(x) or cref(x) to transform an operand into a valid actor object (see primitives. For
example:

21

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

1 << 3; // Immediately evaluated
val(1) << 3; // Lazily evaluated

Supported operators

Unary operators

prefix: ~, !, -, +, ++, --, & (reference), * (dereference)
postfix: ++, --

Binary operators

=, [], +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=
+, -, *, /, %, &, |, ^, <<, >>
==, !=, <, >, <=, >=
&&, ||, ->*

Ternary operator

if_else(c, a, b)

The ternary operator deserves special mention. Since C++ does not allow us to overload the conditional expression: c ? a : b,
the if_else pseudo function is provided for this purpose. The behavior is identical, albeit in a lazy manner.

Member pointer operator

a->*member_object_pointer
a->*member_function_pointer

The left hand side of the member pointer operator must be an actor returning a pointer type. The right hand side of the member
pointer operator may be either a pointer to member object or pointer to member function.

If the right hand side is a member object pointer, the result is an actor which, when evaluated, returns a reference to that member.
For example:

struct A
{

int member;
};

A* a = new A;
...

(arg1->*&A::member)(a); // returns member a->member

If the right hand side is a member function pointer, the result is an actor which, when invoked, calls the specified member function.
For example:

22

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct A
{

int func(int);
};

A* a = new A;
int i = 0;

(arg1->*&A::func)(arg2)(a, i); // returns a->func(i)

Table 4. Include Files

FileOperators

#include <boost/spirit/home/phoenix/operat-

or/arithmetic.hpp>

-, +, ++, --, +=, -=, *=, /=, %=, *, /, %

#include <boost/spirit/home/phoenix/operator/bit-

wise.hpp>

&=, |=, ^=, <<=, >>=, &, |, ^, <<, >>

#include <boost/spirit/home/phoenix/operator/com-

parison.hpp>

==, !=, <, <=, >, >=

#include <boost/spirit/home/phoenix/operat-

or/io.hpp>

<<, >>

#include <boost/spirit/home/phoenix/operator/lo-

gical.hpp>

!, &&, ||

#include <boost/spirit/home/phoenix/operat-

or/self.hpp>

&x, *p, =, []

#include <boost/spirit/home/phoenix/operat-

or/if_else.hpp>

if_else(c, a, b)

#include <boost/spirit/home/phoenix/operator/mem-

ber.hpp>

->*

Statement
Lazy statements...

The primitives and composite building blocks presented so far are sufficiently powerful to construct quite elaborate structures. We
have presented lazy- functions and lazy-operators. How about lazy-statements? First, an appetizer:

Print all odd-numbered contents of an STL container using std::for_each (all_odds.cpp):

for_each(c.begin(), c.end(),
 if_(arg1 % 2 == 1)

[
 cout << arg1 << ' '

]
);

Huh? Is that valid C++? Read on...

23

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/all_odds.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Yes, it is valid C++. The sample code above is as close as you can get to the syntax of C++. This stylized C++ syntax differs from
actual C++ code. First, the if has a trailing underscore. Second, the block uses square brackets instead of the familiar curly braces
{}.

Note

C++ in C++?

In as much as Spirit attempts to mimic EBNF in C++, Phoenix attempts to mimic C++ in C++!!!

Here are more examples with annotations. The code almost speaks for itself.

Block Statement

#include <boost/spirit/home/phoenix/statement/sequence.hpp>

Syntax:

statement,
statement,
....
statement

Basically, these are comma separated statements. Take note that unlike the C/C++ semicolon, the comma is a separator put in-
between statements. This is like Pascal's semicolon separator, rather than C/C++'s semicolon terminator. For example:

statement,
statement,
statement, // ERROR!

Is an error. The last statement should not have a comma. Block statements can be grouped using the parentheses. Again, the last
statement in a group should not have a trailing comma.

statement,
statement,
(
 statement,
 statement
),
statement

Outside the square brackets, block statements should be grouped. For example:

for_each(c.begin(), c.end(),
(

 do_this(arg1),
 do_that(arg1)

)
);

Wrapping a comma operator chain around a parentheses pair blocks the interpretation as an argument separator. The reason for the
exception for the square bracket operator is that the operator always takes exactly one argument, so it "transforms" any attempt at
multiple arguments with a comma operator chain (and spits out an error for zero arguments).

24

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

if_ Statement

#include <boost/spirit/home/phoenix/statement/if.hpp>

We have seen the if_ statement. The syntax is:

if_(conditional_expression)
[
 sequenced_statements
]

ifelse statement

#include <boost/spirit/home/phoenix/statement/if.hpp>

The syntax is

if_(conditional_expression)
[
 sequenced_statements
]
.else_
[
 sequenced_statements
]

Take note that else has a leading dot and a trailing underscore: .else_

Example: This code prints out all the elements and appends " > 5", " == 5" or " < 5" depending on the element's actual value:

for_each(c.begin(), c.end(),
 if_(arg1 > 5)

[
 cout << arg1 << " > 5\n"

]
.else_
[

 if_(arg1 == 5)
[

 cout << arg1 << " == 5\n"
]
.else_
[

 cout << arg1 << " < 5\n"
]

]
);

Notice how the if_else_ statement is nested.

switch_ statement

#include <boost/spirit/home/phoenix/statement/switch.hpp>

The syntax is:

25

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

switch_(integral_expression)
[
 case_<integral_value>(sequenced_statements),

...
 default_<integral_value>(sequenced_statements)
]

A comma separated list of cases, and an optional default can be provided. Note unlike a normal switch statement, cases do not fall
through.

Example: This code prints out "one", "two" or "other value" depending on the element's actual value:

for_each(c.begin(), c.end(),
 switch_(arg1)

[
 case_<1>(cout << val("one") << '\n'),
 case_<2>(cout << val("two") << '\n'),
 default_(cout << val("other value") << '\n')

]
);

while_ Statement

#include <boost/spirit/home/phoenix/statement/while.hpp>

The syntax is:

while_(conditional_expression)
[
 sequenced_statements
]

Example: This code decrements each element until it reaches zero and prints out the number at each step. A newline terminates the
printout of each value.

for_each(c.begin(), c.end(),
(

 while_(arg1--)
[

 cout << arg1 << ", "
],

 cout << val("\n")
)

);

dowhile Statement

#include <boost/spirit/home/phoenix/statement/do_while.hpp>

The syntax is:

26

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

do_
[
 sequenced_statements
]
.while_(conditional_expression)

Again, take note that while has a leading dot and a trailing underscore: .while_

Example: This code is almost the same as the previous example above with a slight twist in logic.

for_each(c.begin(), c.end(),
(

 do_
[

 cout << arg1 << ", "
]
.while_(arg1--),

 cout << val("\n")
)

);

for_ Statement

#include <boost/spirit/home/phoenix/statement/for.hpp>

The syntax is:

for_(init_statement, conditional_expression, step_statement)
[
 sequenced_statements
]

It is again very similar to the C++ for statement. Take note that the init_statement, conditional_expression and stepstatement are
separated by the comma instead of the semi-colon and each must be present (i.e. `for(,,)` is invalid). This is a case where the nothing
actor can be useful.

Example: This code prints each element N times where N is the element's value. A newline terminates the printout of each value.

int iii;
for_each(c.begin(), c.end(),

(
 for_(ref(iii) = 0, ref(iii) < arg1, ++ref(iii))

[
 cout << arg1 << ", "

],
 cout << val("\n")

)
);

As before, all these are lazily evaluated. The result of such statements are in fact composites that are passed on to STL's for_each
function. In the viewpoint of for_each, what was passed is just a functor, no more, no less.

Note

Unlike lazy functions and lazy operators, lazy statements always return void.

27

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

try_ catch_ Statement

#include <boost/spirit/home/phoenix/statement/try_catch.hpp>

The syntax is:

try_
[
 sequenced_statements
]
.catch_<exception_type>()
[
 sequenced_statements
]
...
.catch_all
[
 sequenced_statement
]

Note the usual underscore after try and catch, and the extra parentheses required after the catch.

Example: The following code calls the (lazy) function f for each element, and prints messages about different exception types it
catches.

try_
[
 f(arg1)
]
.catch_<runtime_error>()
[
 cout << val("caught runtime error or derived\n")
]
.catch_<exception>()
[
 cout << val("caught exception or derived\n")
]
.catch_all
[
 cout << val("caught some other type of exception\n")
]

throw_

#include <boost/spirit/home/phoenix/statement/throw.hpp>

As a natural companion to the try/catch support, the statement module provides lazy throwing and rethrowing of exceptions.

The syntax to throw an exception is:

throw_(exception_expression)

The syntax to rethrow an exception is:

28

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

throw_()

Example: This code extends the try/catch example, rethrowing exceptions derived from runtime_error or exception, and translating
other exception types to runtime_errors.

try_
[
 f(arg1)
]
.catch_<runtime_error>()
[
 cout << val("caught runtime error or derived\n"),
 throw_()
]
.catch_<exception>()
[
 cout << val("caught exception or derived\n"),
 throw_()
]
.catch_all
[
 cout << val("caught some other type of exception\n"),
 throw_(runtime_error("translated exception"))
]

Object
The Object module deals with object construction, destruction and conversion. The module provides "lazy" versions of C++'s object
constructor, new, delete, static_cast, dynamic_cast, const_cast and reinterpret_cast.

Construction
Lazy constructors...

#include <boost/spirit/home/phoenix/object/construct.hpp>

Lazily construct an object from an arbitrary set of arguments:

construct<T>(ctor_arg1, ctor_arg2, ..., ctor_argN);

where the given parameters are the parameters to the contructor of the object of type T (This implies, that type T is expected to have
a constructor with a corresponding set of parameter types.).

Example:

construct<std::string>(arg1, arg2)

Constructs a std::string from arg1 and arg2.

Note

The maximum number of actual parameters is limited by the preprocessor constant PHOENIX_COMPOSITE_LIMIT.
Note though, that this limit should not be greater than PHOENIX_LIMIT. By default, PHOENIX_COMPOSITE_LIMIT
is set to PHOENIX_LIMIT (See Actors).

29

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

New
Lazy new...

#include <boost/spirit/home/phoenix/object/new.hpp>

Lazily construct an object, on the heap, from an arbitrary set of arguments:

new_<T>(ctor_arg1, ctor_arg2, ..., ctor_argN);

where the given parameters are the parameters to the contructor of the object of type T (This implies, that type T is expected to have
a constructor with a corresponding set of parameter types.).

Example:

new_<std::string>(arg1, arg2) // note the spelling of new_ (with trailing underscore)

Creates a std::string from arg1 and arg2 on the heap.

Note

Again, the maximum number of actual parameters is limited by the preprocessor constant PHOENIX_COMPOS-
ITE_LIMIT. See the note above.

Delete
Lazy delete...

#include <boost/spirit/home/phoenix/object/delete.hpp>

Lazily delete an object, from the heap:

delete_(arg);

where arg is assumed to be a pointer to an object.

Example:

delete_<std::string>(arg1) // note the spelling of delete_ (with trailing underscore)

Casts
Lazy casts...

#include <boost/spirit/home/phoenix/object/static_cast.hpp>
#include <boost/spirit/home/phoenix/object/dynamic_cast.hpp>
#include <boost/spirit/home/phoenix/object/const_cast.hpp>
#include <boost/spirit/home/phoenix/object/reinterpret_cast.hpp>

The set of lazy C++ cast template functions provide a way of lazily casting an object of a certain type to another type. The syntax
resembles the well known C++ casts. Take note however that the lazy versions have a trailing underscore.

30

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static_cast_<T>(lambda_expression)
dynamic_cast_<T>(lambda_expression)
const_cast_<T>(lambda_expression)
reinterpret_cast_<T>(lambda_expression)

Example:

static_cast_<Base*>(&arg1)

Static-casts the address of arg1 to a Base*.

Scope
Up until now, the most basic ingredient is missing: creation of and access to local variables in the stack. When recursion comes into
play, you will soon realize the need to have true local variables. It may seem that we do not need this at all since an unnamed lambda
function cannot call itself anyway; at least not directly. With some sort of arrangement, situations will arise where a lambda function
becomes recursive. A typical situation occurs when we store a lambda function in a Boost.Function, essentially naming the unnamed
lambda.

There will also be situations where a lambda function gets passed as an argument to another function. This is a more common situation.
In this case, the lambda function assumes a new scope; new arguments and possibly new local variables.

This section deals with local variables and nested lambda scopes.

Local Variables

#include <boost/spirit/home/phoenix/scope/local_variable.hpp>

We use an instance of:

actor<local_variable<Key> >

to represent a local variable. The local variable acts as an imaginary data-bin where a local, stack based data will be placed. Key is
an arbitrary type that is used to identify the local variable. Example:

struct size_key;
actor<local_variable<size_key> > size;

Predefined Local Variables
There are a few predefined instances of actor<local_variable<Key> > named _a.._z that you can already use. To make use
of them, simply use the namespace boost::phoenix::local_names:

using namespace boost::phoenix::local_names;

let

#include <boost/spirit/home/phoenix/scope/let.hpp>

You declare local variables using the syntax:

31

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/function
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

let(local-declarations)
[
 let-body
]

let allows 1..N local variable declarations (where N == PHOENIX_LOCAL_LIMIT). Each declaration follows the form:

local-id = lambda-expression

Note

You can set PHOENIX_LOCAL_LIMIT, the predefined maximum local variable declarations in a let expression. By default,
PHOENIX_LOCAL_LIMIT is set to PHOENIX_LIMIT.

Example:

let(_a = 123, _b = 456)
[
 _a + _b
]

Reference Preservation
The type of the local variable assumes the type of the lambda- expression. Type deduction is reference preserving. For example:

let(_a = arg1, _b = 456)

_a assumes the type of arg1: a reference to an argument, while _b has type int.

Consider this:

int i = 1;

let(_a = arg1)
[
 cout << --_a << ' '
]
(i);

cout << i << endl;

the output of above is : 0 0

While with this:

32

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int i = 1;

let(_a = val(arg1))
[
 cout << --_a << ' '
]
(i);

cout << i << endl;

the output is : 0 1

Reference preservation is necessary because we need to have L-value access to outer lambda-scopes (especially the arguments).
args and refs are L-values. vals are R-values.

Visibility
The scope and lifetimes of the local variables is limited within the let-body. let blocks can be nested. A local variable may hide an
outer local variable. For example:

let(_x = 1, _y = ", World")
[

// _x here is an int: 1

 let(_x = "Hello") // hides the outer _x
[

 cout << _x << _y // prints "Hello, World"
]

]

The RHS (right hand side lambda-expression) of each local-declaration cannot refer to any LHS local-id. At this point, the local-ids
are not in scope yet; they will only be in scope in the let-body. The code below is in error:

let(
 _a = 1
, _b = _a // Error: _a is not in scope yet

)
[

// _a and _b's scope starts here
/*. body .*/

]

However, if an outer let scope is available, this will be searched. Since the scope of the RHS of a local-declaration is the outer scope
enclosing the let, the RHS of a local-declaration can refer to a local variable of an outer scope:

33

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

let(_a = 1)
[
 let(
 _a = 1

, _b = _a // Ok. _a refers to the outer _a
)
[

/*. body .*/
]

]

lambda

#include <boost/spirit/home/phoenix/scope/lambda.hpp>

A lot of times, you'd want to write a lazy function that accepts one or more functions (higher order functions). STL algorithms come
to mind, for example. Consider a lazy version of stl::for_each:

struct for_each_impl
{

template <typename C, typename F>
struct result
{

typedef void type;
};

template <typename C, typename F>
void operator()(C& c, F f) const
{

 std::for_each(c.begin(), c.end(), f);
}

};

function<for_each_impl> const for_each = for_each_impl();

Notice that the function accepts another function, f as an argument. The scope of this function, f, is limited within the operator().
When f is called inside std::for_each, it exists in a new scope, along with new arguments and, possibly, local variables. This
new scope is not at all related to the outer scopes beyond the operator().

Simple syntax:

lambda
[
 lambda-body
]

Like let, local variables may be declared, allowing 1..N local variable declarations (where N == PHOENIX_LOCAL_LIMIT):

lambda(local-declarations)
[
 lambda-body
]

The same restrictions apply with regard to scope and visibility. The RHS (right hand side lambda-expression) of each local-declaration
cannot refer to any LHS local-id. The local-ids are not in scope yet; they will be in scope only in the lambda-body:

34

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lambda(
 _a = 1
, _b = _a // Error: _a is not in scope yet

)

See let Visibility above for more information.

Example: Using our lazy for_each let's print all the elements in a container:

for_each(arg1, lambda[cout << arg1])

As far as the arguments are concerned (arg1..argN), the scope in which the lambda-body exists is totally new. The left arg1 refers
to the argument passed to for_each (a container). The right arg1 refers to the argument passed by std::for_each when we finally
get to call operator() in our for_each_impl above (a container element).

Yet, we may wish to get information from outer scopes. While we do not have access to arguments in outer scopes, what we still
have is access to local variables from outer scopes. We may only be able to pass argument related information from outer lambda
scopes through the local variables.

Note

This is a crucial difference between let and lambda: let does not introduce new arguments; lambda does.

Another example: Using our lazy for_each, and a lazy push_back:

struct push_back_impl
{

template <typename C, typename T>
struct result
{

typedef void type;
};

template <typename C, typename T>
void operator()(C& c, T& x) const
{

 c.push_back(x);
}

};

function<push_back_impl> const push_back = push_back_impl();

write a lambda expression that accepts:

1. a 2-dimensional container (e.g. vector<vector<int> >)

2. a container element (e.g. int)

and pushes-back the element to each of the vector<int>.

Solution:

35

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

for_each(arg1,
 lambda(_a = arg2)

[
 push_back(arg1, _a)

]
)

Since we do not have access to the arguments of the outer scopes beyond the lambda-body, we introduce a local variable _a that
captures the second outer argument: arg2. Hence: _a = arg2. This local variable is visible inside the lambda scope.

(See lambda.cpp)

Bind
Binding is the act of tying together a function to some arguments for deferred (lazy) evaluation. Named Lazy functions require a bit
of typing. Unlike (unnamed) lambda expressions, we need to write a functor somewhere offline, detached from the call site. If you
wish to transform a plain function, member function or member variable to a lambda expression, bind is your friend.

Note

Take note that binders are monomorphic. Rather than binding functions, the preferred way is to write true generic and
polymorphic lazy-functions. However, since most of the time we are dealing with adaptation of exisiting code, binders
get the job done faster.

There is a set of overloaded bind template functions. Each bind(x) function generates a suitable binder object, a composite.

Binding Functions

#include <boost/spirit/home/phoenix/bind/bind_function.hpp>

Example, given a function foo:

void foo(int n)
{
 std::cout << n << std::endl;
}

Here's how the function foo may be bound:

bind(&foo, arg1)

This is now a full-fledged composite that can finally be evaluated by another function call invocation. A second function call will
invoke the actual foo function. Example:

int i = 4;
bind(&foo, arg1)(i);

will print out "4".

36

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/lambda.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Binding Member Functions

#include <boost/spirit/home/phoenix/bind/bind_member_function.hpp>

Binding member functions can be done similarly. A bound member function takes in a pointer or reference to an object as the first
argument. For instance, given:

struct xyz
{

void foo(int) const;
};

xyz's foo member function can be bound as:

bind(&xyz::foo, obj, arg1) // obj is an xyz object

Take note that a lazy-member functions expects the first argument to be a pointer or reference to an object. Both the object (reference
or pointer) and the arguments can be lazily bound. Examples:

xyz obj;
bind(&xyz::foo, arg1, arg2) // arg1.foo(arg2)
bind(&xyz::foo, obj, arg1) // obj.foo(arg1)
bind(&xyz::foo, obj, 100) // obj.foo(100)

Binding Member Variables

#include <boost/spirit/home/phoenix/bind/bind_member_variable.hpp>

Member variables can also be bound much like member functions. Member variables are not functions. Yet, like the ref(x) that
acts like a nullary function returning a reference to the data, member variables, when bound, act like a unary function, taking in a
pointer or reference to an object as its argument and returning a reference to the bound member variable. For instance, given:

struct xyz
{

int v;
};

xyz::v can be bound as:

bind(&xyz::v, obj) // obj is an xyz object

As noted, just like the bound member function, a bound member variable also expects the first (and only) argument to be a pointer
or reference to an object. The object (reference or pointer) can be lazily bound. Examples:

37

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

xyz obj;
bind(&xyz::v, arg1) // arg1.v
bind(&xyz::v, obj) // obj.v
bind(&xyz::v, arg1)(obj) = 4 // obj.v = 4

Container
#include <boost/spirit/home/phoenix/container.hpp>

The container module predefines a set of lazy functions that work on STL containers. These functions provide a mechanism for the
lazy evaluation of the public member functions of the STL containers. The lazy functions are thin wrappers that simply forward to
their respective counterparts in the STL library.

Lazy functions are provided for all of the member functions of the following containers:

• deque

• list

• map

• multimap

• vector

Indeed, should your class have member functions with the same names and signatures as those listed below, then it will automatically
be supported. To summarize, lazy functions are provided for member functions:

• assign

• at

• back

• begin

• capacity

• clear

• empty

• end

• erase

• front

• get_allocator

• insert

• key_comp

• max_size

• pop_back

• pop_front

38

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• push_back

• push_front

• rbegin

• rend

• reserve

• resize

• size

• splice

• value_comp

The lazy functions' names are the same as the corresponding member function. The difference is that the lazy functions are free
functions and therefore does not use the member "dot" syntax.

Table 5. Sample usage

"Lazy" version"Normal" version

at(arg1, 5)my_vector.at(5)

size(arg1)my_list.size()

swap(arg1, arg2)my_vector1.swap(my_vector2)

Notice that member functions with names that clash with stl algorithms are absent. This will be provided in Phoenix's algorithm
module.

No support is provided here for lazy versions of operator+=, operator[] etc. Such operators are not specific to STL containers
and lazy versions can therefore be found in operators.

The following table describes the container functions and their semantics.

Arguments in brackets denote optional parameters.

39

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 6. Lazy STL Container Functions

SemanticsFunction

c.assign(a[, b, c])assign(c, a[, b, c])

c.at(i)at(c, i)

c.back()back(c)

c.begin()begin(c)

c.capacity()capacity(c)

c.clear()clear(c)

c.empty()empty(c)

c.end()end(c)

c.erase(a[, b])erase(c, a[, b])

c.front()front(c)

c.get_allocator()get_allocator(c)

c.insert(a[, b, c])insert(c, a[, b, c])

c.key_comp()key_comp(c)

c.max_size()max_size(c)

c.pop_back()pop_back(c)

c.pop_front()pop_front(c)

c.push_back(d)push_back(c, d)

c.push_front(d)push_front(c, d)

c.pop_front()pop_front(c)

c.rbegin()rbegin(c)

c.rend()rend(c)

c.reserve(n)reserve(c, n)

c.resize(a[, b])resize(c, a[, b])

c.size()size(c)

c.splice(a[, b, c, d])splice(c, a[, b, c, d])

c.value_comp()value_comp(c)

40

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Algorithm
#include <boost/spirit/home/phoenix/algorithm.hpp>

The algorithm module provides wrappers for the standard algorithms in the <algorithm> and <numeric> headers.

The algorithms are divided into the categories iteration, transformation and querying, modelling the Boost.MPL library. The different
algorithm classes can be included using the headers:

#include <boost/spirit/home/phoenix/stl/algorithm/iteration.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/transformation.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/querying.hpp>

The functions of the algorithm module take ranges as arguments where appropriate. This is different to the standard library, but easy
enough to pick up. Ranges are described in detail in the Boost.Range library.

For example, using the standard copy algorithm to copy between 2 arrays:

int array[] = {1, 2, 3};
int output[3];
std::copy(array, array + 3, output); // We have to provide iterators

// to both the start and end of array

The analogous code using the phoenix algorithm module is:

int array[] = {1, 2, 3};
int output[3];
copy(arg1, arg2)(array, output); // Notice only 2 arguments, the end of

// array is established automatically

The Boost.Range library provides support for standard containers, strings and arrays, and can be extended to support additional
types.

The following tables describe the different categories of algorithms, and their semantics.

Arguments in brackets denote optional parameters.

Table 7. Iteration Algorithms

stl SemanticsFunction

for_each(begin(r), end(r), f)for_each(r, c)

accumulate(begin(r), end(r), o[, f])accumulate(r, o[, f])

41

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://boost.org/libs/mpl/doc/index.html
http://boost.org/libs/range/index.html
http://boost.org/libs/range/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 8. Querying Algorithms

stl SemanticsFunction

find(begin(r), end(r), a)find(r, a)

find_if(begin(r), end(r), f)find_if(r, f)

find_end(begin(r1), end(r1), begin(r2),

end(r2)[, f])

find_end(r1, r2[, f])

find_first_of(begin(r1), end(r1), begin(r2),

end(r2)[, f])

find_first_of(r1, r2[, f])

adjacent_find(begin(r), end(r)[, f])adjacent_find(r[, f])

count(begin(r), end(r), a)count(r, a)

count_if(begin(r), end(r), f)count_if(r, f)

distance(begin(r), end(r))distance(r)

mismatch(begin(r), end(r), i[, f])mismatch(r, i[, f])

equal(begin(r), end(r), i[, f])equal(r, i[, f])

search(begin(r1), end(r1), begin(r2), end(r2)[,

f])

search(r1, r2[, f])

lower_bound(begin(r), end(r), a[, f])lower_bound(r, a[, f])

upper_bound(begin(r), end(r), a[, f])upper_bound(r, a[, f])

equal_range(begin(r), end(r), a[, f])equal_range(r, a[, f])

binary_search(begin(r), end(r), a[, f])binary_search(r, a[, f])

includes(begin(r1), end(r1), begin(r2),

end(r2)[, f])

includes(r1, r2[, f])

min_element(begin(r), end(r)[, f])min_element(r[, f])

max_element(begin(r), end(r)[, f])max_element(r[, f])

lexicographical_compare(begin(r1), end(r1), be-

gin(r2), end(r2)[, f])

lexicographical_compare(r1, r2[, f])

42

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 9. Transformation Algorithms

stl SemanticsFunction

copy(begin(r), end(r), o)copy(r, o)

copy_backward(begin(r), end(r), o)copy_backward(r, o)

transform(begin(r), end(r), o, f)transform(r, o, f)

transform(begin(r), end(r), i, o, f)transform(r, i, o, f)

replace(begin(r), end(r), a, b)replace(r, a, b)

replace(begin(r), end(r), f, a)replace_if(r, f, a)

replace_copy(begin(r), end(r), o, a, b)replace_copy(r, o, a, b)

replace_copy_if(begin(r), end(r), o, f, a)replace_copy_if(r, o, f, a)

fill(begin(r), end(r), a)fill(r, a)

fill_n(begin(r), n, a)fill_n(r, n, a)

generate(begin(r), end(r), f)generate(r, f)

generate_n(begin(r), n, f)generate_n(r, n, f)

remove(begin(r), end(r), a)remove(r, a)

remove_if(begin(r), end(r), f)remove_if(r, f)

remove_copy(begin(r), end(r), o, a)remove_copy(r, o, a)

remove_copy_if(begin(r), end(r), o, f)remove_copy_if(r, o, f)

unique(begin(r), end(r)[, f])unique(r[, f])

unique_copy(begin(r), end(r), o[, f])unique_copy(r, o[, f])

reverse(begin(r), end(r))reverse(r)

reverse_copy(begin(r), end(r), o)reverse_copy(r, o)

rotate(begin(r), m, end(r))rotate(r, m)

rotate_copy(begin(r), m, end(r), o)rotate_copy(r, m, o)

random_shuffle(begin(r), end(r), f)random_shuffle(r[, f])

partition(begin(r), end(r), f)partition(r, f)

stable_partition(begin(r), end(r), f)stable_partition(r, f)

sort(begin(r), end(r)[, f])sort(r[, f])

stable_sort(begin(r), end(r)[, f])stable_sort(r[, f])

43

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stl SemanticsFunction

partial_sort(begin(r), m, end(r)[, f])partial_sort(r, m[, f])

partial_sort_copy(begin(r1), end(r1), begin(r2),

end(r2)[, f])

partial_sort_copy(r1, r2[, f])

nth_element(begin(r), n, end(r)[, f])nth_element(r, n[, f])

merge(begin(r1), end(r1), begin(r2), end(r2),

o[, f])

merge(r1, r2, o[, f])

inplace_merge(begin(r), m, end(r)[, f])inplace_merge(r, m[, f])

set_union(begin(r1), end(r1), begin(r2),

end(r2)[, f])

set_union(r1, r2, o[, f])

set_intersection(begin(r1), end(r1), begin(r2),

end(r2)[, f])

set_intersection(r1, r2, o[, f])

set_difference(begin(r1), end(r1), begin(r2),

end(r2)[, f])

set_difference(r1, r2, o[, f])

set_symmetric_difference(begin(r1), end(r1),

begin(r2), end(r2)[, f])

set_symmetric_difference(r1, r2, o[, f])

push_heap(begin(r), end(r)[, f])push_heap(r[, f])

pop_heap(begin(r), end(r)[, f])pop_heap(r[, f])

make_heap(begin(r), end(r)[, f])make_heap(r[, f])

sort_heap(begin(r), end(r)[, f])sort_heap(r[, f])

next_permutation(begin(r), end(r)[, f])next_permutation(r[, f])

prev_permutation(begin(r), end(r)[, f])prev_permutation(r[, f])

inner_product(begin(r), end(r), o[, f1, f2])inner_product(r, o, a[, f1, f2])

partial_sum(begin(r), end(r), o[, f])partial_sum(r, o[, f])

adjacent_difference(begin(r), end(r), o[, f])adjacent_difference(r, o[, f])

Inside Phoenix
This chapter explains in more detail how the library operates. The information henceforth should not be necessary to those who are
interested in just using the library. However, a microscopic view might prove to be beneficial to moderate to advanced programmers
who wish to extend the library.

Actors In Detail

Actor Concept

The main concept is the Actor. Actors are function objects (that can accept 0 to N arguments (where N is a predefined maximum).

44

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

You can set PHOENIX_LIMIT, the predefined maximum arity an actor can take. By default, PHOENIX_LIMIT is set to
10.

actor template class

The actor template class models the Actor concept:

template <typename Eval>
struct actor : Eval
{

typedef Eval eval_type;

 actor();
 actor(Eval const& base);

template <typename T0>
explicit actor(T0 const& _0);

template <typename T0, typename T1>
 actor(T0 const& _0, T1 const& _1);

// more constructors

typename apply_actor<eval_type, basic_environment<> >::type
operator()() const;

template <typename T0>
typename apply_actor<eval_type, basic_environment<T0> >::type
operator()(T0& _0) const;

template <typename T0, typename T1>
typename apply_actor<eval_type, basic_environment<T0, T1> >::type
operator()(T0& _0, T1& _1) const;

// function call operators
};

Table 10. Actor Concept Requirements

Result/SemanticsExpression

The actor's Eval typeT::eval_type

Default ConstructorT()

Constructor from EvalT(base)

Pass through constructorsT(arg0, arg1, ..., argN)

Function call operatorsx(arg0, arg1, ..., argN)

Eval Concept

The actor template class has a single template parameter, Eval, from which it derives from. While the Actor concept represents
a function, the Eval concept represents the function body. The requirements for Eval are intentionally kept simple, to make it easy
to write models of the concept. We shall see an example in the next section.

45

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 11. Eval Concept Requirements

Result/SemanticsExpression

Evaluates the function (see Environment below)return x.eval(env)

The return type of eval (see Environment below)T::result<Env>::type

Constructors

In addition to a default constructor and an constructor from a Eval object, there are templated (pass through) constructors for 1 to N
arguments (N == PHOENIX_LIMIT). These constructors simply forward the arguments to the base.

Note

Parametric Base Class Pattern

Notice that actor derives from its template argument Eval. This is the inverse of the curiously recurring template pattern
(CRTP). With the CRTP, a class, T, has a Derived template parameter that is assumed to be its subclass. The "parametric
base class pattern" (PBCP), on the other hand, inverses the inheritance and makes a class, T, the derived class. Both
CRTP and PBCP techniques have its pros and cons, which is outside the scope of this document. CRTP should really
be renamed "parametric subclass pattern (PSCP), but again, that's another story.

Function Call Operators

There are N function call operators for 0 to N arguments (N == PHOENIX_LIMIT). The actor class accepts the arguments and forwards
the arguments to the actor's base Eval for evaluation.

Note

Forwarding Function Problem

The function call operators cannot accept non-const temporaries and literal constants. There is a known issue with
current C++ called the "Forwarding Function Problem". The problem is that given an arbitrary function F, using current
C++ language rules, one cannot create a forwarding function FF that transparently assumes the arguments of F. Disal-
lowing non-const rvalues arguments partially solves the problem but prohibits code such as f(1, 2, 3);.

Environment

On an actor function call, before calling the actor's Eval::eval for evaluation, the actor creates an environment. Basically, the
environment packages the arguments in a tuple. The Environment is a concept, of which, the basic_environment template class
is a model of.

Table 12. Environment Concept Requirements

Result/SemanticsExpression

The arguments in a tie (a tuple of references)x.args()

The arguments' types in an MPL sequenceT::args_type

The tie (tuple of references) typeT::tie_type

Schematically:

46

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Other parts of the library (e.g. the scope module) extends the Environment concept to hold other information such as local variables,
etc.

apply_actor

apply_actor is a standard MPL style metafunction that simply calls the Action's result nested metafunction:

template <typename Action, typename Env>
struct apply_actor
{

typedef typename Action::template result<Env>::type type;
};

After evaluating the arguments and doing some computation, the eval member function returns something back to the client. To
do this, the forwarding function (the actor's operator()) needs to know the return type of the eval member function that it is calling.
For this purpose, models of Eval are required to provide a nested template class:

template <typename Env>
struct result;

This nested class provides the result type information returned by the Eval's eval member function. The nested template class
result should have a typedef type that reflects the return type of its member function eval.

For reference, here's a typical actor::operator() that accepts two arguments:

template <typename T0, typename T1>
typename apply_actor<eval_type, basic_environment<T0, T1> >::type
operator()(T0& _0, T1& _1) const
{

return eval_type::eval(basic_environment<T0, T1>(_0, _1));
}

actor_result

For reasons of symmetry to the family of actor::operator() there is a special metafunction usable for actor result type calculation
named actor_result. This metafunction allows us to directly to specify the types of the parameters to be passed to the actor::op-
erator() function. Here's a typical actor_result that accepts two arguments:

47

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Action, typename T0, typename T1>
struct actor_result
{

typedef basic_environment<T0, T1> env_type;
typedef typename Action::template result<env_type>::type type;

};

Actor Example
Let us see a very simple prototypical example of an actor. This is not a toy example. This is actually part of the library. Remember
the reference?.

First, we have a model of the Eval concept: the reference:

template <typename T>
struct reference
{

template <typename Env>
struct result
{

typedef T& type;
};

 reference(T& arg)
: ref(arg) {}

template <typename Env>
 T& eval(Env const&) const

{
return ref;

}

 T& ref;
};

Models of Eval are never created directly and its instances never exist alone. We have to wrap it inside the actor template class
to be useful. The ref template function does this for us:

template <typename T>
actor<reference<T> > const
ref(T& v)
{

return reference<T>(v);
}

The reference template class conforms to the Eval concept. It has a nested result metafunction that reflects the return type of
its eval member function, which peforms the actual function. reference<T> stores a reference to a T. Its eval member function
simply returns the reference. It does not make use of the environment Env.

Pretty simple...

Composites In Detail
We stated before that composites are actors that are composed of zero or more actors (see Composite). This is not quite accurate.
The definition was sufficient at that point where we opted to keep things simple and not bury the reader with details which she might
not need anyway.

48

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Actually, a composite is a model of the Eval concept (more on this later). At the same time, it is also composed of 0..N (where N
is a predefined maximum) Eval instances and an eval policy. The individual Eval instances are stored in a tuple.

Note

In a sense, the original definition of "composite", more or less, will do just fine because Eval instances never exist
alone and are always wrapped in an actor template class which inherits from it anyway. The resulting actor IS-AN
Eval.

Note

You can set PHOENIX_COMPOSITE_LIMIT, the predefined maximum Evals (actors) a composite can take. By default,
PHOENIX_COMPOSITE_LIMIT is set to PHOENIX_LIMIT (See Actors).

composite template class

template <typename EvalPolicy, typename EvalTuple>
struct composite : EvalTuple
{

typedef EvalTuple base_type;
typedef EvalPolicy eval_policy_type;

template <typename Env>
struct result
{

typedef implementation-defined type;
};

 composite();
 composite(base_type const& actors);

template <typename U0>
 composite(U0 const& _0);

template <typename U0, typename U1>
 composite(U0 const& _0, U1 const& _1);

// more constructors

template <typename Env>
typename result<Env>::type

 eval(Env const& env) const;
};

EvalTuple
EvalTuple, holds all the Eval instances. The composite template class inherits from it. In addition to a default constructor and
a constructor from an EvalTuple object, there are templated (pass through) constructors for 1 to N arguments (again, where N ==
PHOENIX_COMPOSITE_LIMIT). These constructors simply forward the arguments to the EvalTuple base class.

EvalPolicy
The composite's eval member function calls its EvalPolicy's eval member function (a static member function) passing in the
environment and each of its actors, in parallel. The following diagram illustrates what's happening:

49

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 13. EvalPolicy Requirements

Result/SemanticsExpression

Evaluate the compositex.eval<RT>(env, eval0, eval1, ..., evalN)

The return type of evalT::result<Env, Eval0, Eval1, Eval2, ...,

EvalN>::type

The EvalPolicy is expected to have a nested template class result which has a typedef type that reflects the return type of its
member function eval. Here's a typical example of the composite's eval member function for a 2-actor composite:

template <typename Env>
typename result<Env>::type
eval(Env const& env) const
{

typedef typename result<Env>::type return_type;
return EvalPolicy::template

 eval<return_type>(
 env

, get<0>(*this) // gets the 0th element from EvalTuple
, get<1>(*this)); // gets the 1st element from EvalTuple

}

Composing
Composites are never instantiated directly. Front end expression templates are used to generate the composites. Using expression
templates, we implement a DSEL (Domain Specific Embedded Language) that mimicks native C++. You've seen this DSEL in action
in the preceding sections. It is most evident in the Statement section.

There are some facilities in the library to make composition of composites easier. We have a set of overloaded compose functions
and an as_composite metafunction. Together, these helpers make composing a breeze. We'll provide an example of a composite
later to see why.

50

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

compose

compose<EvalPolicy>(arg0, arg1, arg2, ..., argN);

Given an EvalPolicy and some arguments arg0...argN, returns a proper composite. The arguments may or may not be phoenix
actors (primitives of composites). If not, the arguments are converted to actors appropriately. For example:

compose<X>(3)

converts the argument 3 to an actor<value<int> >(3).

as_composite

as_composite<EvalPolicy, Arg0, Arg1, Arg2, ..., ArgN>::type

This is the metafunction counterpart of compose. Given an EvalPolicy and some argument types Arg0...ArgN, returns a proper
composite type. For example:

as_composite<X, int>::type

is the composite type of the compose<X>(3) expression above.

Composite Example

Now, let's examine an example. Again, this is not a toy example. This is actually part of the library. Remember the while_ lazy
statement? Putting together everything we've learned so far, we will present it here in its entirety (verbatim):

51

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct while_eval
{

template <typename Env, typename Cond, typename Do>
struct result
{

typedef void type;
};

template <typename RT, typename Env, typename Cond, typename Do>
static void

 eval(Env const& env, Cond& cond, Do& do_)
{

while (cond.eval(env))
 do_.eval(env);

}
};

template <typename Cond>
struct while_gen
{
 while_gen(Cond const& cond)

: cond(cond) {}

template <typename Do>
 actor<typename as_composite<while_eval, Cond, Do>::type>

operator[](Do const& do_) const
{

return compose<while_eval>(cond, do_);
}

 Cond cond;
};

template <typename Cond>
while_gen<Cond>
while_(Cond const& cond)
{

return while_gen<Cond>(cond);
}

while_eval is an example of an EvalPolicy. while_gen and while_ are the expression template front ends. Let's break this
apart to understand what's happening. Let's start at the bottom. It's easier that way.

When you write:

while_(cond)

we generate an instance of while_gen<Cond>, where Cond is the type of cond. cond can be an arbitrarily complex actor expression.
The while_gen template class has an operator[] accepting another expression. If we write:

while_(cond)
[
 do_
]

it will generate a proper composite with the type:

52

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

as_composite<while_eval, Cond, Do>::type

where Cond is the type of cond and Do is the type of do_. Notice how we are using phoenix's composition (compose and as_com-
posite) mechanisms here

template <typename Do>
actor<typename as_composite<while_eval, Cond, Do>::type>
operator[](Do const& do_) const
{

return compose<while_eval>(cond, do_);
}

Finally, the while_eval does its thing:

while (cond.eval(env))
 do_.eval(env);

cond and do_, at this point, are instances of Eval. cond and do_ are the Eval elements held by the composite's EvalTuple. env
is the Environment.

Extending
We've shown how it is very easy to extend phoenix by writing new primitives and composites. The modular design of Phoenix makes
it extremely extensible. We have seen that layer upon layer, the whole library is built on a solid foundation. There are only a few
simple well designed concepts that are laid out like bricks. Overall, the library is designed to be extended. Everything above the core
layer can in fact be considered just as extensions to the library. This modular design was inherited from the Spirit inline parser library.

Extension is non-intrusive. And, whenever a component or module is extended, the new extension automatically becomes a first
class citizen and is automatically recognized by all modules and components in the library.

Wrap Up
Sooner or later more FP techniques become standard practice as people find the true value of this programming discipline outside
the academe and into the mainstream. In as much as structured programming of the 70s and object oriented programming in the 80s
and generic programming in the 90s shaped our thoughts towards a more robust sense of software engineering, FP will certainly be
a paradigm that will catapult us towards more powerful software design and engineering onward into the new millenium.

Let me quote Doug Gregor of Boost.org. About functional style programming libraries:

They're gaining acceptance, but are somewhat stunted by the ubiquitousness of broken compilers. The C++ com-
munity is moving deeper into the so-called "STL- style" programming paradigm, which brings many aspects of
functional programming into the fold. Look at, for instance, the Spirit parser to see how such function objects can
be used to build Yacc-like grammars with semantic actions that can build abstract syntax trees on the fly. This
type of functional composition is gaining momentum.

Indeed. Phoenix is another attempt to introduce more FP techniques into the mainstream. Not only is it a tool that will make life
easier for the programmer. In its own right, the actual design of the library itself is a model of true C++ FP in action. The library is
designed and structured in a strict but clear and well mannered FP sense. By all means, use the library as a tool. But for those who
want to learn more about FP in C++, don't stop there, I invite you to take a closer look at the design of the library itself.

So there you have it. Have fun! See you in the FP world.

53

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgement
1. Hartmut Kaiser implemented the original lazy casts and constructors based on his original work on Spirit SE "semantic expressions"

(the precursor to Phoenix).

2. Angus Leeming implemented the container functions on Phoenix-1 which I then ported to Phoenix-2.

3. Daniel Wallin helped with the scope module, local variables, let and lambda and the algorithms. I frequently discuss design issues
with Daniel on Yahoo Messenger.

4. Jaakko Jarvi. DA Lambda MAN!

5. Dave Abrahams, for his constant presence, wherever, whenever.

6. Aleksey Gurtovoy, DA MPL MAN!

7. Doug Gregor, always a source of inpiration.

8. Dan Marsden, did almost all the work in bringing Phoenix-2 out the door.

9. Eric Niebler did a 2.0 pre-release review and wrote some range related code that Phoenix stole and used in the algorithms.

10. Thorsten Ottosen; Eric's range_ex code began life as "container_algo" in the old boost sandbox, by Thorsten in 2002-2003.

11. Jeremy Siek, even prior to Thorsten, in 2001, started the "container_algo".

12. Vladimir Prus wrote the mutating algorithms code from the Boost Wiki.

13. Daryle Walker did a 2.0 pre-release review.

References
1. Why Functional Programming Matters, John Hughes, 1989. Available online at http://www.math.chalmers.se/~rjmh/Papers/why-

fp.html.

2. Boost.Lambda library, Jaakko Jarvi, 1999-2004 Jaakko Jarvi, Gary Powell. Available online at http://www.boost.org/libs/lambda/.

3. Functional Programming in C++ using the FC++ Library: a short article introducing FC++, Brian McNamara and Yannis
Smaragdakis, August 2003. Available online at http://www.cc.gatech.edu/~yannis/fc++/.

4. Side-effects and partial function application in C++, Jaakko Jarvi and Gary Powell, 2001. Available online at http://osl.iu.edu/~ja-
jarvi/publications/papers/mpool01.pdf.

5. Spirit Version 1.8.1, Joel de Guzman, Nov 2004. Available online at http://www.boost.org/libs/spirit/.

6. The Boost MPL Library, Aleksey Gurtovoy and David Abrahams, 2002-2004. Available online at http://www.boost.org/libs/mpl/.

7. Generic Programming Redesign of Patterns, Proceedings of the 5th European Conference on Pattern Languages of Programs,
(EuroPLoP'2000) Irsee, Germany, July 2000. Available online at http://www.coldewey.com/europlop2000/pa-
pers/geraud%2Bduret.zip.

8. A Gentle Introduction to Haskell, Paul Hudak, John Peterson and Joseph Fasel, 1999. Available online at http://www.haskell.org/tu-
torial/.

9. Large scale software design, John Lackos, ISBN 0201633620, Addison-Wesley, July 1996.

10. Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Jhonson, and John Vlissides,
Addison-Wesley, 1995.

54

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://www.boost.org/libs/lambda/
http://www.cc.gatech.edu/~yannis/fc++/
http://osl.iu.edu/~jajarvi/publications/papers/mpool01.pdf
http://osl.iu.edu/~jajarvi/publications/papers/mpool01.pdf
http://www.boost.org/libs/spirit/
http://www.boost.org/libs/mpl/
http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip
http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip
http://www.haskell.org/tutorial/
http://www.haskell.org/tutorial/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

11. The Forwarding Problem: Arguments Peter Dimov, Howard E. Hinnant, Dave Abrahams, September 09, 2002. Available online:
Forwarding Function Problem.

55

Phoenix 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Phoenix 2.0
	Table of Contents
	Preface
	Introduction
	Starter Kit
	Values
	References
	Arguments
	Composites
	Lazy Operators
	Lazy Statements
	Construct, New, Delete, Casts
	Lazy Functions
	More

	Basics
	Organization
	Actors
	Primitives
	Arguments
	Values
	References
	Constant References
	Nothing

	Composite
	Function
	Operator
	Statement
	Block Statement
	if_ Statement
	ifelse statement
	switch_ statement
	while_ Statement
	dowhile Statement
	for_ Statement
	try_ catch_ Statement
	throw_

	Object
	Scope
	Bind

	Container
	Algorithm
	Inside Phoenix
	Actors In Detail
	Actor Example
	Composites In Detail
	Composing
	compose
	as_composite
	Composite Example

	Extending

	Wrap Up
	Acknowledgement
	References

