
Boost.Config
Vesa Karvonen, John Maddock Beman Dawes

Copyright © 2001 -2007 Beman Dawes, Vesa Karvonen, John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Configuring Boost for Your Platform ... 1

Using the default boost configuration ... 1
The <boost/config.hpp> header ... 1
Using the configure script .. 2
User settable options ... 3
Advanced configuration usage .. 5
Testing the boost configuration ... 6

Boost Macro Reference ... 7
Macros that describe defects ... 7
Macros that describe optional features .. 12
Macros that describe possible C++0x features .. 15
Macros that describe C++0x features not supported ... 15
Boost Helper Macros .. 16
Boost Informational Macros ... 19
Macros for libraries with separate source code ... 20

Guidelines for Boost Authors .. 21
Disabling Compiler Warnings ... 22
Adding New Defect Macros ... 22
Adding New Feature Test Macros .. 23
Modifying the Boost Configuration Headers .. 24

Rationale .. 24
The problem .. 24
The solution .. 25

Acknowledgements ... 25

Configuring Boost for Your Platform

Using the default boost configuration
Boost comes already configured for most common compilers and platforms; you should be able to use boost "as is". Since the compiler
is configured separately from the standard library, the default configuration should work even if you replace the compiler's standard
library with a third-party standard library (like STLport).

Using boost "as is" without trying to reconfigure is the recommended method for using boost. You can, however, run the configure
script if you want to, and there are regression tests provided that allow you to test the current boost configuration with your particular
compiler setup.

Boost library users can request support for additional compilers or platforms by visiting our Tracker and submitting a support request.

The <boost/config.hpp> header
Boost library implementations access configuration macros via

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://stlport.sourceforge.net
http://sourceforge.net/tracker/?group_id=7586
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/config.hpp>

While Boost library users are not required to include that file directly, or use those configuration macros, such use is acceptable. The
configuration macros are documented as to their purpose, usage, and limitations which makes them usable by both Boost library and
user code.

Boost informational or helper macros are designed for use by Boost users as well as for our own internal use. Note however, that
the feature test and defect test macros were designed for internal use by Boost libraries, not user code, so they can change at any
time (though no gratuitous changes are made to them). Boost library problems resulting from changes to the configuration macros
are caught by the Boost regression tests, so the Boost libraries are updated to account for those changes. By contrast, Boost library
user code can be adversely affected by changes to the macros without warning. The best way to keep abreast of changes to the
macros used in user code is to monitor the discussions on the Boost developers list.

Using the configure script

Important

This configure script only sets up the Boost headers for use with a particular compiler. It has no effect on Boost.Build,
or how the libraries are built.

If you know that boost is incorrectly configured for your particular setup, and you are on a UNIX like platform, then you may want
to try and improve things by running the boost configure script. From a shell command prompt you will need to cd into <boost-
root>/libs/config/ and type:

sh ./configure

you will see a list of the items being checked as the script works its way through the regression tests. Note that the configure script
only really auto-detects your compiler if it's called g++, c++ or CC. If you are using some other compiler you will need to set one
or more of the following environment variables:

DescriptionVariable

The name of the compiler, for example c++.CXX

The compiler flags to use, for example -O2.CXXFLAGS

The linker flags to use, for example -L/mypath.LDFLAGS

Any libraries to link in, for example -lpthread.LIBS

For example to run the configure script with HP aCC, you might use something like:

export CXX="aCC"
export CXXFLAGS="-Aa -DAportable -D__HPACC_THREAD_SAFE_RB_TREE \
 -DRWSTD_MULTI_THREAD -DRW_MULTI_THREAD -D_REENTRANT -D_THREAD_SAFE"
export LDFLAGS="-DAportable"
export LIBS="-lpthread"
sh ./configure

However you run the configure script, when it finishes you will find a new header -user.hpp- located in the <boost-
root>/libs/config/ directory. Note that configure does not install this header into your boost include path by default. This
header contains all the options generated by the configure script, plus a header-section that contains the user settable options from
the default version of <boost/config/user.hpp> (located under <boost-root>/boost/config/). There are two ways you can use
this header:

2

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Option 1: copy the header into <boost-root>/boost/config/ so that it replaces the default user.hpp provided by boost. This
option allows only one configure-generated setup; boost developers should avoid this option, as it incurs the danger of accidentally
committing a configure-modified <boost/config/user.hpp> to the cvs repository (something you will not be thanked for!).

• Option 2: give the header a more memorable name, and place it somewhere convenient; then, define the macro
BOOST_USER_CONFIG to point to it. For example create a new sub-directory <boost-root>/boost/config/user/, and copy
the header there; for example as multithread-gcc-config.hpp. Then, when compiling add the command line option:
-DBOOST_USER_CONFIG="<boost/config/user/multithread-gcc-config.hpp>", and boost will use the new configur-
ation header. This option allows you to generate more than one configuration header, and to keep them separate from the boost
source - so that updates to the source do not interfere with your configuration.

User settable options
There are some configuration-options that represent user choices, rather than compiler defects or platform specific options. These
are listed in <boost/config/user.hpp> and at the start of a configure-generated user.hpp header. You can define these on the
command line, or by editing <boost/config/user.hpp>, they are listed in the following table:

3

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

When defined, it should point to the name of the user configuration file to include prior to
any boost configuration files. When not defined, defaults to <boost/config/user.hpp>.

BOOST_USER_CONFIG

When defined, it should point to the name of the compiler configuration file to use. Defining
this cuts out the compiler selection logic, and eliminates the dependency on the header con-

BOOST_COMPILER_CONFIG

taining that logic. For example if you are using gcc, then you could define BOOST_COM-
PILER_CONFIG to <boost/config/compiler/gcc.hpp>.

When defined, it should point to the name of the standard library configuration file to use.
Defining this cuts out the standard library selection logic, and eliminates the dependency on

BOOST_STDLIB_CONFIG

the header containing that logic. For example if you are using STLport, then you could define
BOOST_STDLIB_CONFIG to <boost/config/stdlib/stlport.hpp>.

When defined, it should point to the name of the platform configuration file to use. Defining
this cuts out the platform selection logic, and eliminates the dependency on the header con-

BOOST_PLATFORM_CONFIG

taining that logic. For example if you are compiling on linux, then you could define
BOOST_PLATFORM_CONFIG to <boost/config/platform/linux.hpp>.

When defined, no compiler configuration file is selected or included, define when the compiler
is fully conformant with the standard, or where the user header (see BOOST_USER_CONFIG),

BOOST_NO_COMPILER_CONFIG

has had any options necessary added to it, for example by an autoconf generated configure
script.

When defined, no standard library configuration file is selected or included, define when the
standard library is fully conformant with the standard, or where the user header (see

BOOST_NO_STDLIB_CONFIG

BOOST_USER_CONFIG), has had any options necessary added to it, for example by an autoconf
generated configure script.

When defined, no platform configuration file is selected or included, define when the platform
is fully conformant with the standard (and has no useful extra features), or where the user

BOOST_NO_PLATFORM_CONFIG

header (see BOOST_USER_CONFIG), has had any options necessary added to it, for example
by an autoconf generated configure script.

Equivalent to defining all of BOOST_NO_COMPILER_CONFIG, BOOST_NO_STDLIB_CONFIG
and BOOST_NO_PLATFORM_CONFIG.

BOOST_NO_CONFIG

The normal behavior for compiler versions that are newer than the last known version, is to
assume that they have all the same defects as the last known version. By setting this define,

BOOST_STRICT_CONFIG

then compiler versions that are newer than the last known version are assumed to be fully
conforming with the standard. This is probably most useful for boost developers or testers,
and for those who want to use boost to test beta compiler versions.

When this flag is set, if the config finds anything unknown, then it will stop with a #error
rather than continue. Boost regression testers should set this define, as should anyone who
wants to quickly check whether boost is supported on their platform.

BOOST_ASSERT_CONFIG

When defined, disables threading support, even if the compiler in its current translation mode
supports multiple threads.

BOOST_DISABLE_THREADS

When defined, disables the use of Win32 specific API's, even when these are available. Also
has the effect of setting BOOST_DISABLE_THREADS unless BOOST_HAS_PTHREADS is set.

BOOST_DISABLE_WIN32

This option may be set automatically by the config system when it detects that the compiler
is in "strict mode".

4

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/gcc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/stdlib/stlport.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/linux.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Stops boost headers from including any prefix/suffix headers that normally control things
like struct packing and alignment.

BOOST_DISABLE_ABI_HEADERS

A prefix header to include in place of whatever boost.config would normally select, any re-
placement should set up struct packing and alignment options as required.

BOOST_ABI_PREFIX

A suffix header to include in place of whatever boost.config would normally select, any re-
placement should undo the effects of the prefix header.

BOOST_ABI_SUFFIX

Forces all libraries that have separate source, to be linked as dll's rather than static libraries
on Microsoft Windows (this macro is used to turn on __declspec(dllimport) modifiers,
so that the compiler knows which symbols to look for in a dll rather than in a static library).
Note that there may be some libraries that can only be statically linked (Boost.Test for example)
and others which may only be dynamically linked (Boost.Threads for example), in these cases
this macro has no effect.

BOOST_ALL_DYN_LINK

Forces library "whatever" to be linked as a dll rather than a static library on Microsoft Win-
dows: replace the WHATEVER part of the macro name with the name of the library that you
want to dynamically link to, for example use BOOST_DATE_TIME_DYN_LINK or
BOOST_REGEX_DYN_LINK etc (this macro is used to turn on __declspec(dllimport)
modifiers, so that the compiler knows which symbols to look for in a dll rather than in a
static library). Note that there may be some libraries that can only be statically linked
(Boost.Test for example) and others which may only be dynamically linked (Boost.Threads
for example), in these cases this macro is unsupported.

BOOST_WHATEVER_DYN_LINK

Tells the config system not to automatically select which libraries to link against. Normally
if a compiler supports #pragma lib, then the correct library build variant will be automatically
selected and linked against, simply by the act of including one of that library's headers. This
macro turns that feature off.

BOOST_ALL_NO_LIB

Tells the config system not to automatically select which library to link against for library
"whatever", replace WHATEVER in the macro name with the name of the library; for example
BOOST_DATE_TIME_NO_LIB or BOOST_REGEX_NO_LIB. Normally if a compiler supports
#pragma lib, then the correct library build variant will be automatically selected and linked
against, simply by the act of including one of that library's headers. This macro turns that
feature off.

BOOST_WHATEVER_NO_LIB

Causes the auto-linking code to output diagnostic messages indicating the name of the library
that is selected for linking.

BOOST_LIB_DIAGNOSTIC

Overrides the name of the toolset part of the name of library being linked to; note if defined
this must be defined to a quoted string literal, for example "abc".

BOOST_LIB_TOOLSET

Advanced configuration usage
By setting various macros on the compiler command line or by editing <boost/config/user.hpp>, the boost configuration setup can
be optimised in a variety of ways.

Boost's configuration is structured so that the user-configuration is included first (defaulting to <boost/config/user.hpp> if
BOOST_USER_CONFIG is not defined). This sets up any user-defined policies, and gives the user-configuration a chance to influence
what happens next.

Next the compiler, standard library, and platform configuration files are included. These are included via macros (BOOST_COM-
PILER_CONFIG etc, see user settable macros), and if the corresponding macro is undefined then a separate header that detects which
compiler/standard library/platform is in use is included in order to set these. The config can be told to ignore these headers altogether

5

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

if the corresponding BOOST_NO_XXX macro is set (for example BOOST_NO_COMPILER_CONFIG to disable including any compiler
configuration file - see user settable macros).

Finally the boost configuration header, includes <boost/config/suffix.hpp>; this header contains any boiler plate configuration code
- for example where one boost macro being set implies that another must be set also.

The following usage examples represent just a few of the possibilities:

Example 1, creating our own frozen configuration

Lets suppose that we're building boost with Visual C++ 6, and STLport 4.0. Lets suppose also that we don't intend to update our
compiler or standard library any time soon. In order to avoid breaking dependencies when we update boost, we may want to "freeze"
our configuration headers, so that we only have to rebuild our project if the boost code itself has changed, and not because the boost
config has been updated for more recent versions of Visual C++ or STLport. We'll start by realising that the configuration files in
use are: <boost/config/compiler/visualc.hpp> for the compiler, <boost/config/stdlib/stlport.hpp> for the
standard library, and <boost/config/platform/win32.hpp> for the platform. Next we'll create our own private configuration
directory: boost/config/mysetup/, and copy the configuration files into there. Finally, open up <boost/config/user.hpp> and
edit the following defines:

#define BOOST_COMPILER_CONFIG "boost/config/mysetup/visualc.hpp"
#define BOOST_STDLIB_CONFIG "boost/config/mysetup/stlport.hpp"
#define BOOST_USER_CONFIG "boost/config/mysetup/win32.hpp"

Now when you use boost, its configuration header will go straight to our "frozen" versions, and ignore the default versions, you will
now be insulated from any configuration changes when you update boost. This technique is also useful if you want to modify some
of the boost configuration files; for example if you are working with a beta compiler release not yet supported by boost.

Example 2: skipping files that you don't need

Lets suppose that you're using boost with a compiler that is fully conformant with the standard; you're not interested in the fact that
older versions of your compiler may have had bugs, because you know that your current version does not need any configuration
macros setting. In a case like this, you can define BOOST_NO_COMPILER_CONFIG either on the command line, or in <boost/con-
fig/user.hpp>, and miss out the compiler configuration header altogether (actually you miss out two headers, one which works out
what the compiler is, and one that configures boost for it). This has two consequences: the first is that less code has to be c ompiled,
and the second that you have removed a dependency on two boost headers.

Example 3: using configure script to freeze the boost configuration

If you are working on a unix-like platform then you can use the configure script to generate a "frozen" configuration based on your
current compiler setup - see using the configure script for more details.

Testing the boost configuration
The boost configuration library provides a full set of regression test programs under the <boost-root>/boost/config/ test/

sub-directory:

6

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/visualc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/stdlib/stlport.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/win32.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionFile

Prints out a detailed description of your compiler/standard library/platform setup, plus your current boost
configuration. The information provided by this program useful in setting up the boost configuration
files. If you report that boost is incorrectly configured for your compiler/library/platform then please include
the output from this program when reporting the changes required.

config_info.cpp

A monolithic test program that includes most of the individual test cases. This provides a quick check to
see if boost is correctly configured for your compiler/library/platform.

config_test.cpp

Tests your standard library's std::numeric_limits implementation (or its boost provided replacement
if BOOST_NO_LIMITS is defined). This test file fails with most versions of numeric_limits, mainly due
to the way that some compilers treat NAN's and infinity.

limits_test.cpp

Individual compiler defect test files. Each of these should compile, if one does not then the corresponding
BOOST_NO_XXX macro needs to be defined - see each test file for specific details.

no_*pass.cpp

Individual compiler defect test files. Each of these should not compile, if one does then the corresponding
BOOST_NO_XXX macro is defined when it need not be - see each test file for specific details.

no_*fail.cpp

Individual feature test files. If one of these does not compile then the corresponding BOOST_HAS_XXX
macro is defined when it should not be - see each test file for specific details.

has_*pass.cpp

Individual feature test files. If one of these does compile then the corresponding BOOST_HAS_XXX macro
can be safely defined - see each test file for specific details.

has_*fail.cpp

Although you can run the configuration regression tests as individual test files, there are rather a lot of them, so there are a couple
of shortcuts to help you out:

If you have built the boost regression test driver, then you can use this to produce a nice html formatted report of the results using
the supplied test file.

Alternatively you can run the configure script like this:

./configure --enable-test

in which case the script will test the current configuration rather than creating a new one from scratch.

If you are reporting the results of these tests for a new platform/library/compiler then please include a log of the full compiler output,
the output from config_info.cpp, and the pass/fail test results.

Boost Macro Reference

Macros that describe defects
The following macros all describe features that are required by the C++ standard, if one of the following macros is defined, then it
represents a defect in the compiler's conformance with the standard.

7

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../tools/regression/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler exibits certain partial specialisation bug - probably
Borland C++ Builder specific.

CompilerBOOST_BCB_PARTIAL_SPECIAL-

IZATION_BUG

Argument dependent lookup fails if there is a using declaration for
the symbol being looked up in the current scope. For example, using

CompilerBOOST_FUNCTION_SCOPE_US-

I N G _ D E C L A R A -

TION_BREAKS_ADL boost::get_pointer; prevents ADL from finding overloads of
get_pointer in namespaces nested inside boost (but not elsewhere).
Probably Borland specific.

The compiler locates and searches namespaces that it should *not*
in fact search when performing argument dependent lookup.

CompilerBOOST_NO_ADL_BARRIER

Compiler does not implement argument-dependent lookup (also named
Koenig lookup); see std::3.4.2 [basic.koenig.lookup]

CompilerBOOST_NO_ARGUMENT_DEPEND-

ENT_LOOKUP

If the compiler / library supplies non-standard or broken
std::auto_ptr.

Standard libraryBOOST_NO_AUTO_PTR

The Platform does not provide functions for the character-classifying
operations <ctype.h> and <cctype>, only macros.

PlatformBOOST_NO_CTYPE_FUNCTIONS

If template specialisations for cv-qualified types conflict with a spe-
cialisation for a cv-unqualififed type.

CompilerBOOST_NO_CV_SPECIALIZA-

TIONS

If template specialisations for cv-void types conflict with a specialisa-
tion for void.

CompilerBOOST_NO_CV_VOID_SPECIAL-

IZATIONS

The Platform does not provide <wchar.h> and <cwchar>.PlatformBOOST_NO_CWCHAR

The Platform does not provide <wctype.h> and <cwctype>.PlatformBOOST_NO_CWCTYPE

The compiler fails to compile a nested class that has a dependent base
class:

template<typename T>
struct foo : {

template<typename U>
struct bar : public U {};

};

CompilerBOOST_NO_DEPENDENT_NES-

TED_DERIVATIONS

Template value parameters cannot have a dependent type, for example:

template<class T, typename T::type value>
class X { ... };

CompilerB O O S T _ N O _ D E P E N D -

E N T _ T Y P E S _ I N _ T E M -

PLATE_VALUE_PARAMETERS

The standard library does not put some or all of the contents of <ex-
ception> in namespace std.

Standard LibraryB O O S T _ N O _ E X C E P -

TION_STD_NAMESPACE

8

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler does not support exception handling (this setting is
typically required by many C++ compilers for embedded platforms).
Note that there is no requirement for boost libraries to honor this
configuration setting - indeed doing so may be impossible in some
cases. Those libraries that do honor this will typically abort if a critical
error occurs - you have been warned!

CompilerBOOST_NO_EXCEPTIONS

Can only use deduced template arguments when calling function
template instantiations.

CompilerBOOST_NO_EXPLICIT_FUNC-

TION_TEMPLATE_ARGUMENTS

The compiler does not perform function template ordering or its
function template ordering is incorrect.

// #1
template<class T> void f(T);

// #2
template<class T,class U> void f(T(*)(U));

void bar(int);

f(&bar); // should choose #2.

CompilerBOOST_NO_FUNCTION_TEM-

PLATE_ORDERING

Compiler violates std::9.4.2/4.CompilerBOOST_NO_INCLASS_MEM-

BER_INITIALIZATION

The C++ implementation does not provide wchar_t, or it is really a
synonym for another integral type. Use this symbol to decide whether
it is appropriate to explicitly specialize a template on wchar_t if
there is already a specialization for other integer types.

CompilerB O O S T _ N O _ I N T R I N S -

IC_WCHAR_T

The standard library lacks <iosfwd>.std libBOOST_NO_IOSFWD

The standard library lacks <iostream>, <istream> or <ostream>.std libBOOST_NO_IOSTREAM

The C++ compiler does not support SFINAE with abstract types, this
is covered by Core Language DR337, but is not part of the current
standard. Fortunately most compilers that support SFINAE also sup-
port this DR.

CompilerBOOST_NO_IS_ABSTRACT

The C++ implementation does not provide the <limits> header.
Never check for this symbol in library code; always include
<boost/limits.hpp>, which guarantees to provide std::numer-
ic_limits.

Standard libraryBOOST_NO_LIMITS

Constants such as numeric_limits<T>::is_signed are not
available for use at compile-time.

Standard libraryBOOST_NO_LIMITS_COM-

PILE_TIME_CONSTANTS

There is no specialization for numeric_limits<long long> and
numeric_limits<unsigned long long>. <boost/limits.hpp>
will then add these specializations as a standard library "fix" only if
the compiler supports the long long datatype.

Standard libraryBOOST_NO_LONG_LONG_NUMER-

IC_LIMITS

9

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#337
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler does not support the specialization of individual member
functions of template classes.

CompilerBOOST_NO_MEMBER_FUNC-

TION_SPECIALIZATIONS

If the compiler supports member templates, but not the template
keyword when accessing member template classes.

CompilerBOOST_NO_MEMBER_TEM-

PLATE_KEYWORD

Member template friend syntax (template<class P> friend
class frd;) described in the C++ Standard, 14.5.3, not supported.

CompilerBOOST_NO_MEMBER_TEM-

PLATE_FRIENDS

Member template functions not fully supported.CompilerBOOST_NO_MEMBER_TEMPLATES

There is no specialization for numeric_limits<__int64> and
numeric_limits<unsigned __int64>. <boost/limits.hpp>
will then add these specializations as a standard library "fix", only if
the compiler supports the __int64 datatype.

Standard libraryBOOST_NO_MS_INT64_NUMER-

IC_LIMITS

Compiler doesn't allow a nested class to access private members of
its containing class. Probably Borland/CodeGear specific.

CompilerBOOST_NO_NESTED_FRIEND-

SHIP

Compiler requires inherited operator friend functions to be defined
at namespace scope, then using'ed to boost. Probably GCC specific.
See <boost/operators.hpp> for example.

CompilerB O O S T _ N O _ O P E R A T -

ORS_IN_NAMESPACE

The compiler does not correctly handle partial specializations which
depend upon default arguments in the primary template.

CompilerBOOST_NO_PARTIAL_SPECIAL-

IZATION_IMPLICIT_DE-

FAULT_ARGS

The compiler does not correctly handle pointers to const member
functions, preventing use of these in overloaded function templates.
See <boost/functional.hpp> for example.

CompilerBOOST_NO_POINTER_TO_MEM-

BER_CONST

Pointers to members don't work when used as template parameters.CompilerBOOST_NO_POINTER_TO_MEM-

BER_TEMPLATE_PARAMETERS

The compiler misreads 8.5.1, treating classes as non-aggregate if they
contain private or protected member functions.

CompilerBOOST_NO_PRIVATE_IN_AG-

GREGATE

The compiler may (or may not) have the typeid operator, but RTTI
on the dynamic type of an object is not supported.

CompilerBOOST_NO_RTTI

The compiler does not support the "Substitution Failure Is Not An
Error" meta-programming idiom.

CompilerBOOST_NO_SFINAE

The C++ standard library does not provide a standards conforming
std::allocator.

Standard libraryBOOST_NO_STD_ALLOCATOR

The platform does not have a conforming version of std::distance.Standard libraryBOOST_NO_STD_DISTANCE

The C++ implementation fails to provide the std::iterator class.Standard libraryBOOST_NO_STD_ITERATOR

The compiler does not provide a standard compliant implementation
of std::iterator_traits. Note that the compiler may still have
a non-standard implementation.

Standard libraryBOOST_NO_STD_ITERAT-

OR_TRAITS

The standard library lacks std::locale.Standard libraryBOOST_NO_STD_LOCALE

10

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/operators.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/functional.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The standard library lacks a conforming std::messages facet.Standard libraryBOOST_NO_STD_MESSAGES

The C++ standard library does not provide the min() and max()
template functions that should be in <algorithm>.

Standard libraryBOOST_NO_STD_MIN_MAX

Defined if the standard library's output iterators are not assignable.Standard libraryBOOST_NO_STD_OUTPUT_ITER-

ATOR_ASSIGN

The <typeinfo> header declares type_info in the global namespace
instead of namespace std.

Standard libraryBOOST_NO_STD_TYPEINFO

The standard library lacks a conforming std::use_facet.Standard libraryBOOST_NO_STD_USE_FACET

The standard library's implementation of std::basic_stream-
buf<wchar_t> is either missing, incomplete, or buggy.

Standard libraryBOOST_NO_STD_WSTREAMBUF

The standard library lacks std::wstring.Standard libraryBOOST_NO_STD_WSTRING

The contents of C++ standard headers for C library functions (the
<c...> headers) have not been placed in namespace std. This test is
difficult - some libraries "fake" the std C functions by adding using
declarations to import them into namespace std, unfortunately they
don't necessarily catch all of them...

Compiler, PlatformBOOST_NO_STDC_NAMESPACE

The C++ implementation does not provide the <sstream> header.Standard libraryBOOST_NO_STRINGSTREAM

The platform does not have a conforming version of swprintf.PlatformBOOST_NO_SWPRINTF

Class template partial specialization (14.5.4 [temp.class.spec]) not
supported.

CompilerBOOST_NO_TEMPLATE_PAR-

TIAL_SPECIALIZATION

The standard library does not provide templated iostream classes.Standard libraryB O O S T _ N O _ T E M -

PLATED_IOSTREAMS

The standard library does not provide templated iterator constructors
for its containers.

Standard libraryBOOST_NO_TEMPLATED_ITERAT-

OR_CONSTRUCTORS

The compiler does not support template template parameters.CompilerBOOST_NO_TEMPLATE_TEM-

PLATES

The compiler does not support the typeid operator at all.CompilerBOOST_NO_TYPEID

The typename keyword cannot be used when creating a temporary of
a Dependent type.

CompilerBOOST_NO_TYPENAME_WITH_CT-

OR

If a return is unreachable, then no return statement should be required,
however some compilers insist on it, while other issue a bunch of
warnings if it is in fact present.

CompilerBOOST_NO_UNREACHABLE_RE-

TURN_DETECTION

The compiler will not accept a using declaration that brings a function
from a typename used as a base class into a derived class if functions
of the same name are present in the derived class.

CompilerBOOST_NO_USING_DECLARA-

TION_OVERLOADS_FROM_TYPE-

NAME_BASE

11

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler will not accept a using declaration that imports a tem-
plate class or function from another namespace. Originally a Borland
specific problem with imports to/from the global namespace, extended
to MSVC6 which has a specific issue with importing template classes
(but not functions).

CompilerBOOST_NO_USING_TEMPLATE

The compiler does not allow a void function to return the result of
calling another void function.

void f() {}
void g() { return f(); }

CompilerBOOST_NO_VOID_RETURNS

Macros that describe optional features
The following macros describe features that are not required by the C++ standard. The macro is only defined if the feature is present.

12

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The platform supports BeOS style threads.PlatformBOOST_HAS_BETHREADS

The platform has the POSIX API clock_gettime.PlatformBOOST_HAS_CLOCK_GETTIME

The compiler uses __declspec(dllexport) and __de-
clspec(dllimport) to export/import symbols from dll's.

CompilerBOOST_HAS_DECLSPEC

The platform has the POSIX header <dirent.h>.PlatformBOOST_HAS_DIRENT_H

The platform has the functions expm1, expm1f and expm1l in
<math.h>

PlatformBOOST_HAS_EXPM1

The platform has the Win32 API GetSystemTimeAsFileTime.PlatformBOOST_HAS_FTIME

The platform has the POSIX API gettimeofday.PlatformBOOST_HAS_GETTIMEOFDAY

The C++ implementation provides the (SGI) hash_set and
hash_map classes. When defined, BOOST_HASH_SET_HEADER

Standard libraryBOOST_HAS_HASH

and BOOST_HASH_LIST_HEADER will contain the names of the
header needed to access hash_set and hash_map;
BOOST_STD_EXTENSION_NAMESPACE will provide the
namespace in which the two class templates reside.

The platform has the functions log1p, log1pf and log1pl in
<math.h>.

PlatformBOOST_HAS_LOG1P

The standard library lacks a conforming std::use_facet, but
has a macro _USE(loc, Type) that does the job. This is
primarily for the Dinkumware std lib.

Standard libraryBOOST_HAS_MACRO_USE_FACET

The compiler supports the __int64 data type.CompilerBOOST_HAS_MS_INT64

The platform has the POSIX API nanosleep.PlatformBOOST_HAS_NANOSLEEP

The platform has an <nl_types.h>.PlatformBOOST_HAS_NL_TYPES_H

Indicated that the compiler supports the named return value op-
timization (NRVO). Used to select the most efficient implement-

CompilerBOOST_HAS_NRVO

ation for some function. See <boost/operators.hpp> for
example.

The standard library has a partially conforming std::allocat-
or class, but without any of the member templates.

Standard LibraryBOOST_HAS_PARTIAL_STD_ALLOC-

ATOR

The platform has the POSIX API pthread_delay_np.PlatformBOOST_HAS_PTHREAD_DELAY_NP

The platform has the POSIX API pthread_mutexattr_set-
type.

PlatformBOOST_HAS_PTHREAD_MUTEXAT-

TR_SETTYPE

The platform has the POSIX API pthread_yield.PlatformBOOST_HAS_PTHREAD_YIELD

The platform support POSIX style threads.PlatformBOOST_HAS_PTHREADS

The platform has the POSIX API sched_yield.PlatformBOOST_HAS_SCHED_YIELD

13

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/operators.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler has native support for SGI style type traits.Compiler, Standard lib-
rary

BOOST_HAS_SGI_TYPE_TRAITS

The platform has a <stdint.h>PlatformBOOST_HAS_STDINT_H

The C++ implementation provides the (SGI) slist class. When
defined, BOOST_SLIST_HEADER will contain the name of the
header needed to access slist and BOOST_STD_EXTEN-
SION_NAMESPACE will provide the namespace in which slist
resides.

Standard libraryBOOST_HAS_SLIST

The standard library lacks a conforming std::use_facet, but
has a workaround class-version that does the job. This is
primarily for the STLport std lib.

Standard libraryBOOST_HAS_STLP_USE_FACET

The library has a TR1 conforming version of <array>.Standard libraryBOOST_HAS_TR1_ARRAY

The library has a version of <complex> that supports passing
scalars to the complex number algorithms.

Standard libraryBOOST_HAS_TR1_COMPLEX_OVER-

LOADS

The library has a version of <complex> that includes the new
inverse trig functions from TR1.

Standard libraryBOOST_HAS_TR1_COMPLEX_IN-

VERSE_TRIG

The library has TR1 conforming reference wrappers in <func-
tional>.

Standard libraryBOOST_HAS_TR1_ R E F E R -

ENCE_WRAPPER

The library has a TR1 conforming result_of template in <func-
tional>.

Standard libraryBOOST_HAS_TR1_RESULT_OF

The library has a TR1 conforming mem_fn function template in
<functional>.

Standard libraryBOOST_HAS_TR1_MEM_FN

The library has a TR1 conforming bind function template in
<functional>.

Standard libraryBOOST_HAS_TR1_BIND

The library has a TR1 conforming function class template in
<functional>.

Standard libraryBOOST_HAS_TR1_FUNCTION

The library has a TR1 conforming hash function template in
<functional>.

Standard libraryBOOST_HAS_TR1_HASH

The library has a TR1 conforming shared_ptr class template
in <memory>.

Standard libraryBOOST_HAS_TR1_SHARED_PTR

The library has a TR1 conforming version of <random>.Standard libraryBOOST_HAS_TR1_RANDOM

The library has a TR1 conforming version of <regex>.Standard libraryBOOST_HAS_TR1_REGEX

The library has a TR1 conforming version of <tuple>.Standard libraryBOOST_HAS_TR1_TUPLE

The library has a TR1 conforming version of <type_traits>.Standard libraryBOOST_HAS_TR1_TYPE_TRAITS

The library has the TR1 additions to <utility> (tuple interface
to std::pair).

Standard libraryBOOST_HAS_TR1_UTILITY

14

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The library has a TR1 conforming version of <un-

ordered_map>.
Standard libraryBOOST_HAS_TR1_UNORDERED_MAP

The library has a TR1 conforming version of <un-

ordered_set>.
Standard libraryBOOST_HAS_TR1_UNORDERED_SET

Implies all the other BOOST_HAS_TR1_* macros should be set.Standard libraryBOOST_HAS_TR1

Defined if the compiler, in its current translation mode, supports
multiple threads of execution.

Platform, CompilerBOOST_HAS_THREADS

The standard library lacks a conforming std::use_facet, but has
a two argument version that does the job. This is primarily for
the Rogue Wave std lib.

Standard libraryBOOST_HAS_TWO_ARG_USE_FACET

The Platform provides <unistd.h>.PlatformBOOST_HAS_UNISTD_H

The platform supports MS Windows style threads.PlatformBOOST_HAS_WINTHREADS

Microsoft's broken version of std::iterator is being used.
This implies that std::iterator takes no more than two
template parameters.

Standard libraryBOOST_MSVC_STD_ITERATOR

Microsoft Visual C++ 6.0 has enough member template idiosyn-
crasies (being polite) that BOOST_NO_MEMBER_TEMPLATES is
defined for this compiler. BOOST_MSVC6_MEMBER_TEMPLATES
is defined to allow compiler specific workarounds. This macro
gets defined automatically if BOOST_NO_MEMBER_TEMPLATES
is not defined - in other words this is treated as a strict subset of
the features required by the standard.

CompilerBOOST_MSVC6_MEMBER_TEM-

PLATES

There are no 1998 C++ Standard headers <stdint.h> or
<cstdint>, although the 1999 C Standard does include
<stdint.h>. If <stdint.h> is present, <boost/stdint.h>
can make good use of it, so a flag is supplied (signalling pres-
ence; thus the default is not present, conforming to the current
C++ standard).

PlatformBOOST_HAS_STDINT_H

Macros that describe possible C++0x features
The following macros describe features that are likely to be included in the upcoming ISO C++ standard, C++0x, but have not yet
been approved for inclusion in the language.

DescriptionMacro

The compiler supports concepts.BOOST_HAS_CONCEPTS

Macros that describe C++0x features not supported
The following macros describe features in the upcoming ISO C++ standard, C++0x, that are not yet supported by a particular compiler.

15

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

The compiler does not support type char16_t.BOOST_NO_CHAR16_T

The compiler does not support type char32_t.BOOST_NO_CHAR32_T

The compiler does not support constexpr.BOOST_NO_CONSTEXPR

The compiler does not support decltype.BOOST_NO_DECLTYPE

The compiler does not support defaulted (= default) functions.BOOST_NO_DEFAULTED_FUNCTIONS

The compiler does not support deleted (= delete) functions.BOOST_NO_DELETED_FUNCTIONS

The compiler does not support explicit conversion operators (explicit
operator T()).

BOOST_NO_EXPLICIT_CONVERSION_OPERA-

TIONS

The compiler does not support explicit instantiation declarations for templates
(explicit template).

BOOST_NO_EXTERN_TEMPLATE

The C++ compiler does not support C++0x initializer lists.BOOST_NO_INITIALIZER_LISTS

The compiler does not support long long.BOOST_NO_LONG_LONG

The compiler does not support raw string literals.BOOST_NO_RAW_LITERALS

The compiler does not support r-value references.BOOST_NO_RVALUE_REFERENCES

The compiler does not support scoped enumerations (enum class).BOOST_NO_SCOPED_ENUMS

The compiler does not support static_assert.BOOST_NO_STATIC_ASSERT

The standard library does not support <unordered_map> and <unordered_set>.BOOST_NO_STD_UNORDERD

The compiler does not support Unicode (u8, u, U) literals.BOOST_NO_UNICODE_LITERALS

The compiler does not support variadic templates.BOOST_NO_VARIADIC_TEMPLATES

Boost Helper Macros
The following macros are either simple helpers, or macros that provide workarounds for compiler/standard library defects.

16

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Some compilers don't support the use of typename for dependent types in deduced contexts.
This macro expands to nothing on those compilers, and typename elsewhere. For example,

BOOST_DEDUCED_TYPENAME

replace: template <class T> void f(T, typename T::type); with: template
<class T> void f(T, BOOST_DEDUCED_TYPENAME T::type);

The header to include to get the SGI hash_map class. This macro is only available if
BOOST_HAS_HASH is defined.

BOOST_HASH_MAP_HEADER

The header to include to get the SGI hash_set class. This macro is only available if
BOOST_HAS_HASH is defined.

BOOST_HASH_SET_HEADER

The header to include to get the SGI slist class. This macro is only available if
BOOST_HAS_SLIST is defined.

BOOST_SLIST_HEADER

The namespace used for std library extensions (hashtable classes etc).B O O S T _ S T D _ E X T E N -

SION_NAMESPACE

On compilers which don't allow in-class initialization of static integral constant members, we
must use enums as a workaround if we want the constants to be available at compile-time.
This macro gives us a convenient way to declare such constants. For example instead of:

struct foo{
static const int value = 2;

};

use:

struct foo{
 BOOST_STATIC_CONSTANT(int, value = 2);
};

B O O S T _ S T A T I C _ C O N -

STANT(Type, assignment)

Normally evaluates to nothing, but evaluates to return x; if the compiler requires a return, even
when it can never be reached.

BOOST_UNREACHABLE_RE-

TURN(result)

17

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Some compilers silently "fold" different function template instantiations if some of the template
parameters don't appear in the function parameter list. For instance:

#include <iostream>
#include <ostream>
#include <typeinfo>

template <int n>
void f() { std::cout << n << ' '; }

template <typename T>
void g() { std::cout << typeid(T).name() << ' '; }

int main() {
 f<1>();
 f<2>();

 g<int>();
 g<double>();
}

incorrectly outputs 2 2 double double on VC++ 6. These macros, to be used in the function
parameter list, fix the problem without effects on the calling syntax. For instance, in the case
above write:

template <int n>
void f(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, n)) { ... }

template <typename T>
void g(BOOST_EXPLICIT_TEMPLATE_TYPE(T)) { ... }

Beware that they can declare (for affected compilers) a dummy defaulted parameter, so they

a) should be always invoked at the end of the parameter list

b) can't be used if your function template is multiply declared.

Furthermore, in order to add any needed comma separator, an APPEND_* version must be used
when the macro invocation appears after a normal parameter declaration or after the invocation
of another macro of this same group.

BOOST_EXPLICIT_TEM-

PLATE_TYPE(t)BOOST_EXPLI-

C I T _ T E M -

PLATE_NON_TYPE(t,v)

BOOST_APPEND_EXPLICIT_TEM-

PLATE_TYPE(t) BOOST_AP-

P E N D _ E X P L I C I T _ T E M -

PLATE_NON_TYPE(t,v)

When the standard library does not have a comforming std::use_facet there are various
workarounds available, but they differ from library to library. This macro provides a consistent
way to access a locale's facets. For example, replace: std::use_facet<Type>(loc); with:
BOOST_USE_FACET(Type, loc); Note do not add a std:: prefix to the front of
BOOST_USE_FACET.

BOOST_USE_FACET(Type,

loc)

When the standard library does not have a comforming std::has_facet there are various
workarounds available, but they differ from library to library. This macro provides a consistent
way to check a locale's facets. For example, replace: std::has_facet<Type>(loc); with:
BOOST_HAS_FACET(Type, loc); Note do not add a std:: prefix to the front of
BOOST_HAS_FACET.

BOOST_HAS_FACET(Type,

loc)

18

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Member templates are supported by some compilers even though they can't use the A::tem-
plate member<U> syntax, as a workaround replace: typedef typename A::template
rebind<U> binder; with: typedef typename A::BOOST_NESTED_TEMPLATE re-
bind<U> binder;

BOOST_NESTED_TEMPLATE

Converts the parameter X to a string after macro replacement on X has been performed.BOOST_STRINGIZE(X)

This piece of macro magic joins the two arguments together, even when one of the arguments
is itself a macro (see 16.3.1 in C++ standard). This is normally used to create a mangled name
in combination with a predefined macro such a __LINE__.

BOOST_JOIN(X,Y)

Boost Informational Macros
The following macros describe boost features; these are, generally speaking the only boost macros that should be tested in user code.

DescriptionHeaderMacro

Describes the boost version number in XXYYZZ format such that:
(BOOST_VERSION % 100) is the sub-minor version,
((BOOST_VERSION / 100) % 1000) is the minor version, and
(BOOST_VERSION / 100000) is the major version.

<boost/version.hpp>BOOST_VERSION

Defined if there are no 64-bit integral types: int64_t, uint64_t
etc.

<boost/cstdint.hpp>

<boost/stdint.h>

BOOST_NO_INT64_T

Defined if int64_t as defined by <boost/cstdint.hpp> is not
usable in integral constant expressions.

<boost/cstdint.hpp>

<boost/stdint.h>

BOOST_NO_INTEG-

RAL_INT64_T

Defined if the compiler is really Microsoft Visual C++, as opposed
to one of the many other compilers that also define _MSC_VER.

<boost/config.hpp>BOOST_MSVC

Defined if the compiler is an Intel compiler, takes the same value
as the compiler version macro.

<boost/config.hpp>BOOST_INTEL

Defined if the Windows platfrom API is available.<boost/config.hpp>BOOST_WINDOWS

Defined if the dinkumware standard library is in use, takes the same
value as the Dinkumware library version macro _CPPLIB_VER if
defined, otherwise 1.

<boost/config.hpp>B O O S T _ D I N K U M -

WARE_STDLIB

Defined if the regex library does not support wide character regular
expressions.

<boost/regex.hpp>BOOST_NO_WREGEX

Defined as a string describing the name and version number of the
compiler in use. Mainly for debugging the configuration.

<boost/config.hpp>BOOST_COMPILER

Defined as a string describing the name and version number of the
standard library in use. Mainly for debugging the configuration.

<boost/config.hpp>BOOST_STDLIB

Defined as a string describing the name of the platform. Mainly for
debugging the configuration.

<boost/config.hpp>BOOST_PLATFORM

19

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Macros for libraries with separate source code
The following macros and helper headers are of use to authors whose libraries include separate source code, and are intended to address
two issues: fixing the ABI of the compiled library, and selecting which compiled library to link against based upon the compilers
settings.

ABI Fixing

When linking against a pre-compiled library it vital that the ABI used by the compiler when building the library matches exactly the
ABI used by the code using the library. In this case ABI means things like the struct packing arrangement used, the name mangling
scheme used, or the size of some types (enum types for example). This is separate from things like threading support, or runtime
library variations, which have to be dealt with by build variants. To put this in perspective there is one compiler (Borland's) that has
so many compiler options that make subtle changes to the ABI, that at least in theory there 3200 combinations, and that's without
considering runtime library variations. Fortunately these variations can be managed by #pragma's that tell the compiler what ABI
to use for the types declared in your library. In order to avoid sprinkling #pragma's all over the boost headers, there are some prefix
and suffix headers that do the job. Typical usage is:

my_library.hpp

#ifndef MY_INCLUDE_GUARD
#define MY_INCLUDE_GUARD

// all includes go here:
#include <boost/config.hpp>
#include <whatever>

#include <boost/config/abi_prefix.hpp> // must be the last #include

namespace boost {

// your code goes here

}

#include <boost/config/abi_suffix.hpp> // pops abi_prefix.hpp pragmas

#endif // include guard

my_library.cpp

...
// nothing special need be done in the implementation file
...

The user can disable this mechanism by defining BOOST_DISABLE_ABI_HEADERS, or they can define BOOST_ABI_PREFIX and/or
BOOST_ABI_SUFFIX to point to their own prefix/suffix headers if they so wish.

Automatic library selection

It is essential that users link to a build of a library which was built against the same runtime library that their application will be built
against -if this does not happen then the library will not be binary compatible with their own code- and there is a high likelihood that
their application will experience runtime crashes. These kinds of problems can be extremely time consuming and difficult to debug,
and often lead to frustrated users and authors alike (simply selecting the right library to link against is not as easy as it seems when
their are 6-8 of them to chose from, and some users seem to be blissfully unaware that there even are different runtimes available to
them).

To solve this issue, some compilers allow source code to contain #pragma's that instruct the linker which library to link against, all
the user need do is include the headers they need, place the compiled libraries in their library search path, and the compiler and linker

20

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

do the rest. Boost.config supports this via the header <boost/config/auto_link.hpp>, before including this header one or more
of the following macros need to be defined:

BOOST_LIB_NAME Required: An identifier containing the basename of the library, for example 'boost_regex'.

BOOST_DYN_LINK Optional: when set link to dll rather than static library.

BOOST_LIB_DIAGNOSTIC Optional: when set the header will print out the name of the library selected (useful for debugging).

If the compiler supports this mechanism, then it will be told to link against the appropriately named library, the actual algorithm
used to mangle the name of the library is documented inside <boost/config/auto_link.hpp> and has to match that used to
create the libraries via bjam 's install rules.

my_library.hpp

...
//
// Don't include auto-linking code if the user has disabled it by
// defining BOOST_ALL_NO_LIB, or BOOST_MY_LIBRARY_NO_LIB, or if this
// is one of our own source files (signified by BOOST_MY_LIBRARY_SOURCE):
//
#if !defined(BOOST_ALL_NO_LIB) && !defined(BOOST_MY_LIBRARY_NO_LIB) && !defined(BOOST_MY_LIB↵
RARY_SOURCE)
define BOOST_LIB_NAME boost_my_library
ifdef BOOST_MY_LIBRARY_DYN_LINK
define BOOST_DYN_LINK
endif
include <boost/config/auto_link.hpp>
#endif
...

my_library.cpp

// define BOOST_MY_LIBRARY_SOURCE so that the header knows that the
// library is being built (possibly exporting rather than importing code)
//
#define BOOST_MY_LIBRARY_SOURCE

#include <boost/my_library/my_library.hpp>
...

Guidelines for Boost Authors
The <boost/config.hpp> header is used to pass configuration information to other boost files, allowing them to cope with platform
dependencies such as arithmetic byte ordering, compiler pragmas, or compiler shortcomings. Without such configuration information,
many current compilers would not work with the Boost libraries.

Centralizing configuration information in this header reduces the number of files that must be modified when porting libraries to
new platforms, or when compilers are updated. Ideally, no other files would have to be modified when porting to a new platform.

Configuration headers are controversial because some view them as condoning broken compilers and encouraging non-standard
subsets. Adding settings for additional platforms and maintaining existing settings can also be a problem. In other words, configuration
headers are a necessary evil rather than a desirable feature. The boost config.hpp policy is designed to minimize the problems and
maximize the benefits of a configuration header.

Note that:

• Boost library implementers are not required to "#include <boost/config.hpp>", and are not required in any way to support
compilers that do not comply with the C++ Standard (ISO/IEC 14882).

21

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• If a library implementer wishes to support some non-conforming compiler, or to support some platform specific feature, "#include
<boost/config.hpp>" is the preferred way to obtain configuration information not available from the standard headers such
as <climits>, etc.

• If configuration information can be deduced from standard headers such as <climits>, use those standard headers rather than
<boost/config.hpp>.

• Boost files that use macros defined in <boost/config.hpp> should have sensible, standard conforming, default behavior if the
macro is not defined. This means that the starting point for porting <boost/config.hpp> to a new platform is simply to define
nothing at all specific to that platform. In the rare case where there is no sensible default behavior, an #error message should describe
the problem.

• If a Boost library implementer wants something added to config.hpp, post a request on the Boost mailing list. There is no
guarantee such a request will be honored; the intent is to limit the complexity of config.hpp.

• The intent is to support only compilers which appear on their way to becoming C++ Standard compliant, and only recent releases
of those compilers at that.

• The intent is not to disable mainstream features now well-supported by the majority of compilers, such as namespaces, exceptions,
RTTI, or templates.

Disabling Compiler Warnings
The header <boost/config/warning_disable.hpp> can be used to disable certain compiler warings that are hard or impossible
to otherwise remove.

Note that:

• This header should never be included by another Boost header, it should only ever be used by a library source file or a test
case.

• The header should be included before you include any other header.

• This header only disables warnings that are hard or impossible to otherwise deal with, and which are typically emitted by one
compiler only, or in one compilers own standard library headers.

Currently it disables the following warnings:

WarningCompiler

C4996: Error 'function': was declared deprecatedVisual C++ 8 and later

Warning 1786: relates to the use of "deprecated" standard library functions rather like C4996 in Visual
C++.

Intel C++

Adding New Defect Macros
When you need to add a new defect macro - either to fix a problem with an existing library, or when adding a new library - distil the
issue down to a simple test case; often, at this point other (possibly better) workarounds may become apparent. Secondly always
post the test case code to the boost mailing list and invite comments; remember that C++ is complex and that sometimes what may
appear a defect, may in fact turn out to be a problem with the authors understanding of the standard.

When you name the macro, follow the BOOST_NO_SOMETHING naming convention, so that it's obvious that this is a macro reporting
a defect.

Finally, add the test program to the regression tests. You will need to place the test case in a .ipp file with the following comments
near the top:

22

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://msdn2.microsoft.com/en-us/library/ttcz0bys(VS.80).aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// MACRO: BOOST_NO_FOO
// TITLE: foo
// DESCRIPTION: If the compiler fails to support foo

These comments are processed by the autoconf script, so make sure the format follows the one given. The file should be named
"boost_no_foo.ipp", where foo is the defect description - try and keep the file name under the Mac 30 character filename limit
though. You will also need to provide a function prototype "int test()" that is declared in a namespace with the same name as
the macro, but in all lower case, and which returns zero on success:

namespace boost_no_foo {

int test()
{

// test code goes here:
//
return 0;

}

}

Once the test code is in place in libs/config/test, updating the configuration test system proceeds as:

• cd into libs/config/tools and run bjam : this generates the .cpp file test cases from the .ipp file, updates the libs/con-
fig/test/all/Jamfile.v2, config_test.cpp and config_info.cpp.

• cd into libs/config/test/all and run bjam MACRONAME compiler-list : where MACRONAME is the name of the
new macro, and compiler-list is a space separated list of compilers to test with. You should see the tests pass with those
compilers that don't have the defect, and fail with those that do.

• cd into libs/config/test and run bjam config_info config_test compiler-list : config_info should build and
run cleanly for all the compilers in compiler-list while config_test should fail for those that have the defect, and pass for
those that do not.

Then you should:

• Define the defect macro in those config headers that require it.

• Document the macro in this documentation (please do not forget this step!!)

• Commit everything.

• Keep an eye on the regression tests for new failures in Boost.Config caused by the addition.

• Start using the macro.

Adding New Feature Test Macros
When you need to add a macro that describes a feature that the standard does not require, follow the convention for adding a new
defect macro (above), but call the macro BOOST_HAS_FOO, and name the test file "boost_has_foo.ipp". Try not to add feature
test macros unnecessarily, if there is a platform specific macro that can already be used (for example _WIN32, __BEOS__, or __linux)
to identify the feature then use that. Try to keep the macro to a feature group, or header name, rather than one specific API (for example
BOOST_HAS_NL_TYPES_H rather than BOOST_HAS_CATOPEN). If the macro describes a POSIX feature group, then add boilerplate
code to <boost/config/suffix.hpp> to auto-detect the feature where possible (if you are wondering why we can't use POSIX feature
test macro directly, remember that many of these features can be added by third party libraries, and are not therefore identified inside
<unistd.h>).

23

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Modifying the Boost Configuration Headers
The aim of boost's configuration setup is that the configuration headers should be relatively stable - a boost user should not have to
recompile their code just because the configuration for some compiler that they're not interested in has changed. Separating the
configuration into separate compiler/standard library/platform sections provides for part of this stability, but boost authors require
some amount of restraint as well, in particular:

<boost/config.hpp> should never change, don't alter this file.

<boost/config/user.hpp> is included by default, don't add extra code to this file unless you have to. If you do, please remember to
update libs/config/tools/configure.in as well.

<boost/config/suffix.hpp> is always included so be careful about modifying this file as it breaks dependencies for everyone. This
file should include only "boilerplate" configuration code, and generally should change only when new macros are added.

<boost/config/select_compiler_config.hpp>, <boost/config/select_platform_config.hpp> and <boost/config/select_stdlib_config.hpp>
are included by default and should change only if support for a new compiler/standard library/platform is added.

The compiler/platform/standard library selection code is set up so that unknown platforms are ignored and assumed to be fully
standards compliant - this gives unknown platforms a "sporting chance" of working "as is" even without running the configure script.

When adding or modifying the individual mini-configs, assume that future, as yet unreleased versions of compilers, have all the defects
of the current version. Although this is perhaps unnecessarily pessimistic, it cuts down on the maintenance of these files, and exper-
ience suggests that pessimism is better placed than optimism here!

Rationale
The problem with many traditional "textbook" implementations of configuration headers (where all the configuration options are in
a single "monolithic" header) is that they violate certain fundamental software engineering principles which would have the effect
of making boost more fragile, more difficult to maintain and more difficult to use safely. You can find a description of the principles
from the following article.

The problem
Consider a situation in which you are concurrently developing on multiple platforms. Then consider adding a new platform or
changing the platform definitions of an existing platform. What happens? Everything, and this does literally mean everything, recom-
piles. Isn't it quite absurd that adding a new platform, which has absolutely nothing to do with previously existing platforms, means
that all code on all existing platforms needs to be recompiled?

Effectively, there is an imposed physical dependency between platforms that have nothing to do with each other. Essentially, the
traditional solution employed by configuration headers does not conform to the Open-Closed Principle:

"A module should be open for extension but closed for modification."

Extending a traditional configuration header implies modifying existing code.

Furthermore, consider the complexity and fragility of the platform detection code. What if a simple change breaks the detection on
some minor platform? What if someone accidentally or on purpose (as a workaround for some other problem) defines some platform
dependent macros that are used by the detection code? A traditional configuration header is one of the most volatile headers of the
entire library, and more stable elements of Boost would depend on it. This violates the Stable Dependencies Principle:

"Depend in the direction of stability."

After even a minor change to a traditional configuration header on one minor platform, almost everything on every platform should
be tested if we follow sound software engineering practice.

Another important issue is that it is not always possible to submit changes to <boost/config.hpp>. Some boost users are currently
working on platforms using tools and libraries that are under strict Non-Disclosure Agreements. In this situation it is impossible to

24

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../tools/configure.in
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_compiler_config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_platform_config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_stdlib_config.hpp
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

submit changes to a traditional monolithic configuration header, instead some method by which the user can insert their own config-
uration code must be provided.

The solution
The approach taken by boost's configuration headers is to separate configuration into three orthogonal parts: the compiler, the
standard library and the platform. Each compiler/standard library/platform gets its own mini-configuration header, so that changes
to one compiler's configuration (for example) does not affect other compilers. In addition there are measures that can be taken both
to omit the compiler/standard library/platform detection code (so that adding support to a new platform does not break dependencies),
or to freeze the configuration completely; providing almost complete protection against dependency changes.

Acknowledgements
Beman Dawes provided the original config.hpp and part of this document.

Vesa Karvonen provided a description of the principles (see rationale) and put together an early version of the current configuration
setup.

John Maddock put together the configuration current code, the test programs, the configuration script and the reference section of
this document.

Matias Capeletto converted the docs to quickbook format.

Numerous boost members, past and present, have contributed fixes to boost's configuration.

25

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Config
	Table of Contents
	Configuring Boost for Your Platform
	Using the default boost configuration
	The <boost/config.hpp> header
	Using the configure script
	User settable options
	Advanced configuration usage
	Example 1, creating our own frozen configuration
	Example 2: skipping files that you don't need
	Example 3: using configure script to freeze the boost configuration

	Testing the boost configuration

	Boost Macro Reference
	Macros that describe defects
	Macros that describe optional features
	Macros that describe possible C++0x features
	Macros that describe C++0x features not supported
	Boost Helper Macros
	Boost Informational Macros
	Macros for libraries with separate source code
	ABI Fixing
	Automatic library selection

	Guidelines for Boost Authors
	Disabling Compiler Warnings
	Adding New Defect Macros
	Adding New Feature Test Macros
	Modifying the Boost Configuration Headers

	Rationale
	The problem
	The solution

	Acknowledgements

