
Concept reference
Copyright © 2001, 2002 Indiana University
Copyright © 2000, 2001 University of Notre Dame du Lac
Copyright © 2000 Jeremy Siek, Lie-Quan Lee, Andrew Lumsdaine
Copyright © 1996-1999 Silicon Graphics Computer Systems, Inc.
Copyright © 1994 Hewlett-Packard Company

This product includes software developed at the University of Notre Dame and the Pervasive Technology Labs at Indiana University.
For technical information contact Andrew Lumsdaine at the Pervasive Technology Labs at Indiana University. For administrative
and license questions contact the Advanced Research and Technology Institute at 351 West 10th Street. Indianapolis, Indiana 46202,
phone 317-278-4100, fax 317-274-5902.

Some concepts based on versions from the MTL draft manual and Boost Graph and Property Map documentation, the SGI Standard
Template Library documentation and the Hewlett-Packard STL, under the following license:

Concepts
• Assignable

• InputIterator

• OutputIterator

• ForwardIterator

• BidirectionalIterator

• RandomAccessIterator

• DefaultConstructible

• CopyConstructible

• EqualityComparable

• LessThanComparable

• SignedInteger

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept Assignable
Assignable

Description

Assignable types must have copy constructors, operator= for assignment, and the swap() function defined.

Refinement of

• CopyConstructible

Notation

X A type playing the role of assignable-type in the Assignable concept.

x, y Objects of type X

Valid expressions

SemanticsTypeExpressionName

Require operator=X &x = yAssignment

Require swap() functionvoidswap(x, y)Swap

Models

• int

See also

• CopyConstructible

2

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept InputIterator
InputIterator

Description

An input iterator is an iterator that can read through a sequence of values. It is single-pass (old values of the iterator cannot be re-
used), and read-only.

An input iterator represents a position in a sequence. Therefore, the iterator can point into the sequence (returning a value when
dereferenced and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of

• Assignable

• DefaultConstructible

• EqualityComparable

Associated types

• value_type

std::iterator_traits<Iter>::value_type

The value type of the iterator (not necessarily what *i returns)

• difference_type

std::iterator_traits<Iter>::difference_type

The difference type of the iterator

• category

std::iterator_traits<Iter>::iterator_category

The category of the iterator

Notation

Iter A type playing the role of iterator-type in the InputIterator concept.

i, j Objects of type Iter

x Object of type value_type

Type expressions

Category tag category must be derived from std::input_iterator_tag, a model of DefaultConstructible, and
a model of CopyConstructible.

Value type copy constructibility value_type must be a model of CopyConstructible.

Difference type properties difference_type must be a model of SignedInteger.

3

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Valid expressions

PostconditionSemanticsPreconditionTypeExpressionName

i is incrementable
(not off-the-end)

Convertible to
value_type

*iDereference

i is incrementable
(not off-the-end)

Iter &++iPreincrement

i is dereference-
able or off-the-end

Equivalent to
(void)(++i)

i is incrementable
(not off-the-end)

i++Postincrement

i is dereference-
able or off-the-end

Equivalent to
{value_type t

= *i; ++i; re-

turn t;}

i is incrementable
(not off-the-end)

Convertible to
value_type

*i++Postincrement and
dereference

Complexity

All iterator operations must take amortized constant time.

Models

• std::istream_iterator

See also

• DefaultConstructible

• EqualityComparable

• ForwardIterator

• OutputIterator

4

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept OutputIterator
OutputIterator

Description

An output iterator is an iterator that can write a sequence of values. It is single-pass (old values of the iterator cannot be re-used),
and write-only.

An output iterator represents a position in a (possibly infinite) sequence. Therefore, the iterator can point into the sequence (returning
a value when dereferenced and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Associated types

• value_type

std::iterator_traits<Iter>::value_type

The stated value type of the iterator (should be void for an output iterator that does not model some other iterator concept).

• difference_type

std::iterator_traits<Iter>::difference_type

The difference type of the iterator

• category

std::iterator_traits<Iter>::iterator_category

The category of the iterator

Notation

Iter A type playing the role of iterator-type in the OutputIterator concept.

ValueType A type playing the role of value-type in the OutputIterator concept.

i, j Objects of type Iter

x Object of type ValueType

Type expressions

The type Iter must be a model of Assignable.

The type ValueType must be a model of Assignable.

The type Iter must be a model of DefaultConstructible.

The type Iter must be a model of EqualityComparable.

Category tag category must be derived from std::output_iterator_tag, a model of DefaultConstructible, and
a model of CopyConstructible.

Difference type properties difference_type must be a model of SignedInteger.

5

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Valid expressions

PostconditionSemanticsPreconditionTypeExpressionName

i is incrementable
(not off-the-end)

*iDereference

*i may not be
written to again un-
til it has been incre-
mented.

i is incrementable
(not off-the-end)

*i = xDereference and
assign

i is incrementable
(not off-the-end)

Iter &++iPreincrement

i is dereference-
able or off-the-end

Equivalent to
(void)(++i)

i is incrementable
(not off-the-end)

i++Postincrement

i is dereference-
able or off-the-end

Equivalent to {*i
= t; ++i;}

i is incrementable
(not off-the-end)

*i++ = xPos t inc remen t ,
dereference, and
assign

Complexity

All iterator operations must take amortized constant time.

Models

• std::ostream_iterator, ...

• std::insert_iterator, ...

• std::front_insert_iterator, ...

• std::back_insert_iterator, ...

6

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept ForwardIterator
ForwardIterator

Description

A forward iterator is an iterator that can read through a sequence of values. It is multi-pass (old values of the iterator can be re-used),
and can be either mutable (data pointed to by it can be changed) or not mutable.

An iterator represents a position in a sequence. Therefore, the iterator can point into the sequence (returning a value when dereferenced
and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of

• InputIterator

• OutputIterator

Associated types

• value_type

std::iterator_traits<Iter>::value_type

The value type of the iterator

• category

std::iterator_traits<Iter>::iterator_category

The category of the iterator

Notation

Iter A type playing the role of iterator-type in the ForwardIterator concept.

i, j Objects of type Iter

x Object of type value_type

Type expressions

Category tag category must be derived from std::forward_iterator_tag.

7

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Valid expressions

PostconditionSemanticsPreconditionTypeExpressionName

i is incrementable
(not off-the-end)

const-if-not-mut-
able value_type &

*iDereference

i is incrementable
(not off-the-end)

const-if-not-mut-
able value_type *

i->{member-name}
(return type is
pointer-to-object
type)

Member access

i is incrementable
(not off-the-end)

Iter &++iPreincrement

i is dereference-
able or off-the-end

Equivalent to
{Iter j = i;

++i; return

j;}

i is incrementable
(not off-the-end)

Iteri++Postincrement

Complexity

All iterator operations must take amortized constant time.

Invariants

Predecrement must return object &i = &(++i)

Unique path through sequence i == j implies ++i == ++j

Models

• T *

• std::hash_set<T>::iterator

See also

• BidirectionalIterator

8

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept BidirectionalIterator
BidirectionalIterator

Description

A bidirectional iterator is an iterator that can read through a sequence of values. It can move in either direction through the sequence,
and can be either mutable (data pointed to by it can be changed) or not mutable.

An iterator represents a position in a sequence. Therefore, the iterator can point into the sequence (returning a value when dereferenced
and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of

• ForwardIterator

Associated types

• value_type

std::iterator_traits<Iter>::value_type

The value type of the iterator

• category

std::iterator_traits<Iter>::iterator_category

The category of the iterator

Notation

Iter A type playing the role of iterator-type in the BidirectionalIterator concept.

i, j Objects of type Iter

x Object of type value_type

Type expressions

Category tag category must be derived from std::bidirectional_iterator_tag.

9

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Valid expressions

PostconditionSemanticsPreconditionTypeExpressionName

i is incrementable
(not off-the-end)
and some derefer-
enceable iterator j
exists such that i
== ++j

Iter &--iPredecrement

i is dereference-
able or off-the-end

Equivalent to
{Iter j = i; -

-i; return j;}

Same as for pre-
decrement

Iteri--Postdecrement

Complexity

All iterator operations must take amortized constant time.

Invariants

Predecrement must return object &i = &(--i)

Unique path through sequence i == j implies --i == --j

Increment and decrement are in-
verses

++i; --i; and --i; ++i; must end up with the value of i unmodified, if i both of the
operations in the pair are valid.

Models

• T *

• std::list<T>::iterator

See also

• RandomAccessIterator

10

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept RandomAccessIterator
RandomAccessIterator

Description

A random access iterator is an iterator that can read through a sequence of values. It can move in either direction through the sequence
(by any amount in constant time), and can be either mutable (data pointed to by it can be changed) or not mutable.

An iterator represents a position in a sequence. Therefore, the iterator can point into the sequence (returning a value when dereferenced
and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of

• BidirectionalIterator

• LessThanComparable

Associated types

• value_type

std::iterator_traits<Iter>::value_type

The value type of the iterator

• category

std::iterator_traits<Iter>::iterator_category

The category of the iterator

• difference_type

std::iterator_traits<Iter>::difference_type

The difference type of the iterator (measure of the number of steps between two iterators)

Notation

Iter A type playing the role of iterator-type in the RandomAccessIterator concept.

i, j Objects of type Iter

x Object of type value_type

n Object of type difference_type

int_off Object of type int

Type expressions

Category tag category must be derived from std::random_access_iterator_tag.

11

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Valid expressions

SemanticsTypeExpressionName

Equivalent to applying i++ n

times if n is positive, applying
i-- -n times if n is negative,
and to a null operation if n is
zero.

Iter &i += nMotion

Equivalent to applying i++ n

times if n is positive, applying
i-- -n times if n is negative,
and to a null operation if n is
zero.

Iter &i += int_offMotion (with integer offset)

Equivalent to i+=(-n)Iter &i -= nSubtractive motion

Equivalent to i+=(-n)Iter &i -= int_offSubtractive motion (with in-
teger offset)

Equivalent to {Iter j = i;
j += n; return j;}

Iteri + nAddition

Equivalent to {Iter j = i;
j += n; return j;}

Iteri + int_offAddition with integer

Equivalent to i + nItern + iAddition (count first)

Equivalent to i + nIterint_off + iAddition with integer (count
first)

Equivalent to i + (-n)Iteri - nSubtraction

Equivalent to i + (-n)Iteri - int_offSubtraction with integer

The number of times i must
be incremented (or decremen-
ted if the result is negative) to
reach j. Not defined if j is not
reachable from i.

difference_typei - jDistance

Equivalent to *(i + n)c o n s t - i f - n o t - m u t a b l e
value_type &

i[n]Element access

Equivalent to *(i + n)c o n s t - i f - n o t - m u t a b l e
value_type &

i[int_off]Element access with integer
index

Complexity

All iterator operations must take amortized constant time.

Models

• T *

• std::vector<T>::iterator

12

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


• std::vector<T>::const_iterator

• std::deque<T>::iterator

• std::deque<T>::const_iterator

See also

• LessThanComparable

13

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept DefaultConstructible
DefaultConstructible

Description

DefaultConstructible objects only need to have a default constructor.

Notation

X A type playing the role of default-constructible-type in the DefaultConstructible concept.

Valid expressions

SemanticsTypeExpressionName

Construct an instance of the
type with default parameters.

XX()Construction

Models

• int

• std::vector<double>

14

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept CopyConstructible
CopyConstructible

Description

Copy constructible types must be able to be constructed from another member of the type.

Notation

X A type playing the role of copy-constructible-type in the CopyConstructible concept.

x, y Objects of type X

Valid expressions

SemanticsTypeExpressionName

Require copy constructor.XX(x)Copy construction

Models

• int

15

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept EqualityComparable
EqualityComparable

Description

Equality Comparable types must have == and != operators.

Notation

X A type playing the role of comparable-type in the EqualityComparable concept.

x, y Objects of type X

Valid expressions

TypeExpressionName

Convertible to boolx == yEquality test

Convertible to boolx != yInequality test

Models

• int

• std::vector<int>

16

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept LessThanComparable
LessThanComparable

Description

LessThanComparable types must have <, >, <=, and >= operators.

Notation

X A type playing the role of comparable-type in the LessThanComparable concept.

x, y Objects of type X

Valid expressions

SemanticsTypeExpressionName

Determine if one value is less
than another.

Convertible to boolx < yLess than

Determine if one value is less
than or equal to another.

Convertible to boolx <= yLess than or equal

Determine if one value is
greater than another.

Convertible to boolx > yGreater than

Determine if one value is
greater than or equal to anoth-
er.

Convertible to boolx >= yGreater than or equal to

Models

• int

17

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Concept SignedInteger
SignedInteger

Refinement of

• CopyConstructible

• Assignable

• DefaultConstructible

• EqualityComparable

• LessThanComparable

Notation

T A type playing the role of integral-type in the SignedInteger concept.

x, y,
z

Objects of type T

a, b Objects of type int

Type expressions

Conversion to int T must be convertible to int.

18

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


Valid expressions

19

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


TypeExpressionName

TT(a)Conversion from int

T &++xPreincrement

T &--xPredecrement

Tx++Postincrement

Tx--Postdecrement

Tx + ySum

Tx + aSum with int

T &x += ySum-assignment

T &x += aSum-assignment with int

Tx - yDifference

Tx - aDifference with int

Tx * yProduct

Tx * aProduct with int

T &x *= aProduct-assignment with int

Ta * xProduct with int on left

Tx / yQuotient

Tx / aQuotient with int

Tx >> yRight-shift

Tx >> aRight-shift with int

T &x >>= aRight-shift-assignment with int

Convertible to boolx < yLess-than comparison

Convertible to boolx < aLess-than comparison with int

Convertible to boolx < boost::sample_value < std::size_t >()Less-than comparison with size_t

Convertible to boolx > yGreater-than comparison

Convertible to boolx > aGreater-than comparison with int

Convertible to boolx <= yLess-than-or-equal comparison

Convertible to boolx <= aLess-than-or-equal comparison with int

Convertible to boolx >= yGreater-than-or-equal comparison

20

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


TypeExpressionName

Convertible to boolx >= aGreater-than-or-equal comparison with
int

Convertible to boola >= xGreater-than-or-equal comparison with
int on left

Convertible to boolx == yEquality comparison

Convertible to boolx == aEquality comparison with int

21

Concept reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Concept reference
	Table of Contents
	Concepts
	Concept Assignable
	Concept InputIterator
	Concept OutputIterator
	Concept ForwardIterator
	Concept BidirectionalIterator
	Concept RandomAccessIterator
	Concept DefaultConstructible
	Concept CopyConstructible
	Concept EqualityComparable
	Concept LessThanComparable
	Concept SignedInteger

