
Boost.Asio
Christopher Kohlhoff
Copyright © 2003 - 2008 Christopher M. Kohlhoff

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Boost.Asio is a cross-platform C++ library for network and low-level I/O programming that provides developers with a consistent
asynchronous model using a modern C++ approach.

Overview An overview of the features included in Boost.Asio, plus rationale and design information.

Using Boost.Asio How to use Boost.Asio in your applications. Includes information on library dependencies and
supported platforms.

Tutorial A tutorial that introduces the fundamental concepts required to use Boost.Asio, and shows how
to use Boost.Asio to develop simple client and server programs.

Examples Examples that illustrate the use of Boost.Asio in more complex applications.

Reference Detailed class and function reference.

Index Book-style text index of Boost.Asio documentation.

Overview
• Rationale

• Core Concepts and Functionality

• Basic Boost.Asio Anatomy

• The Proactor Design Pattern: Concurrency Without Threads

• Threads and Boost.Asio

• Strands: Use Threads Without Explicit Locking

• Buffers

• Streams, Short Reads and Short Writes

• Reactor-Style Operations

• Line-Based Operations

• Custom Memory Allocation

• Networking

• TCP, UDP and ICMP

• Socket Iostreams

• The BSD Socket API and Boost.Asio

• Timers

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Serial Ports

• POSIX-Specific Functionality

• UNIX Domain Sockets

• Stream-Oriented File Descriptors

• Windows-Specific Functionality

• Stream-Oriented HANDLEs

• Random-Access HANDLEs

• SSL

• Platform-Specific Implementation Notes

Rationale
Most programs interact with the outside world in some way, whether it be via a file, a network, a serial cable, or the console.
Sometimes, as is the case with networking, individual I/O operations can take a long time to complete. This poses particular challenges
to application development.

Boost.Asio provides the tools to manage these long running operations, without requiring programs to use concurrency models based
on threads and explicit locking.

The Boost.Asio library is intended for programmers using C++ for systems programming, where access to operating system func-
tionality such as networking is often required. In particular, Boost.Asio addresses the following goals:

• Portability. The library should support a range of commonly used operating systems, and provide consistent behaviour across
these operating systems.

• Scalability. The library should facilitate the development of network applications that scale to thousands of concurrent connections.
The library implementation for each operating system should use the mechanism that best enables this scalability.

• Efficiency. The library should support techniques such as scatter-gather I/O, and allow programs to minimise data copying.

• Model concepts from established APIs, such as BSD sockets. The BSD socket API is widely implemented and understood, and
is covered in much literature. Other programming languages often use a similar interface for networking APIs. As far as is reasonable,
Boost.Asio should leverage existing practice.

• Ease of use. The library should provide a lower entry barrier for new users by taking a toolkit, rather than framework, approach.
That is, it should try to minimise the up-front investment in time to just learning a few basic rules and guidelines. After that, a
library user should only need to understand the specific functions that are being used.

• Basis for further abstraction. The library should permit the development of other libraries that provide higher levels of abstraction.
For example, implementations of commonly used protocols such as HTTP.

Although Boost.Asio started life focused primarily on networking, its concepts of asynchronous I/O have been extended to include
other operating system resources such as serial ports, file descriptors, and so on.

Core Concepts and Functionality
• Basic Boost.Asio Anatomy

• The Proactor Design Pattern: Concurrency Without Threads

• Threads and Boost.Asio

2

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Strands: Use Threads Without Explicit Locking

• Buffers

• Streams, Short Reads and Short Writes

• Reactor-Style Operations

• Line-Based Operations

• Custom Memory Allocation

Basic Boost.Asio Anatomy

Boost.Asio may be used to perform both synchronous and asynchronous operations on I/O objects such as sockets. Before using
Boost.Asio it may be useful to get a conceptual picture of the various parts of Boost.Asio, your program, and how they work together.

As an introductory example, let's consider what happens when you perform a connect operation on a socket. We shall start by ex-
amining synchronous operations.

Your program will have at least one io_service object. The io_service represents your program's link to the operating system's
I/O services.

boost::asio::io_service io_service;

To perform I/O operations your program will need an I/O object such as a TCP socket:

boost::asio::ip::tcp::socket socket(io_service);

When a synchronous connect operation is performed, the following sequence of events occurs:

1. Your program initiates the connect operation by calling the I/O object:

3

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.connect(server_endpoint);

2. The I/O object forwards the request to the io_service.

3. The io_service calls on the operating system to perform the connect operation.

4. The operating system returns the result of the operation to the io_service.

5. The io_service translates any error resulting from the operation into a boost::system::error_code. An error_code may
be compared with specific values, or tested as a boolean (where a false result means that no error occurred). The result is then
forwarded back up to the I/O object.

6. The I/O object throws an exception of type boost::system::system_error if the operation failed. If the code to initiate the
operation had instead been written as:

boost::system::error_code ec;
socket.connect(server_endpoint, ec);

then the error_code variable ec would be set to the result of the operation, and no exception would be thrown.

When an asynchronous operation is used, a different sequence of events occurs.

1. Your program initiates the connect operation by calling the I/O object:

socket.async_connect(server_endpoint, your_completion_handler);

where your_completion_handler is a function or function object with the signature:

void your_completion_handler(const boost::system::error_code& ec);

The exact signature required depends on the asynchronous operation being performed. The reference documentation indicates the
appropriate form for each operation.

2. The I/O object forwards the request to the io_service.

4

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3. The io_service signals to the operating system that it should start an asynchronous connect.

Time passes. (In the synchronous case this wait would have been contained entirely within the duration of the connect operation.)

4. The operating system indicates that the connect operation has completed by placing the result on a queue, ready to be picked up
by the io_service.

5. Your program must make a call to io_service::run() (or to one of the similar io_service member functions) in order for
the result to be retrieved. A call to io_service::run() blocks while there are unfinished asynchronous operations, so you would
typically call it as soon as you have started your first asynchronous operation.

6. While inside the call to io_service::run(), the io_service dequeues the result of the operation, translates it into an error_code,
and then passes it to your completion handler.

This is a simplified picture of how Boost.Asio operates. You will want to delve further into the documentation if your needs are
more advanced, such as extending Boost.Asio to perform other types of asynchronous operations.

The Proactor Design Pattern: Concurrency Without Threads

The Boost.Asio library offers side-by-side support for synchronous and asynchronous operations. The asynchronous support is based
on the Proactor design pattern [POSA2]. The advantages and disadvantages of this approach, when compared to a synchronous-only
or Reactor approach, are outlined below.

Proactor and Boost.Asio

Let us examine how the Proactor design pattern is implemented in Boost.Asio, without reference to platform-specific details.

5

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Proactor design pattern (adapted from [POSA2])

— Asynchronous Operation

Defines an operation that is executed asynchronously, such as an asynchronous read or write on a socket.

— Asynchronous Operation Processor

Executes asynchronous operations and queues events on a completion event queue when operations complete.
From a high-level point of view, services like stream_socket_service are asynchronous operation processors.

— Completion Event Queue

Buffers completion events until they are dequeued by an asynchronous event demultiplexer.

— Completion Handler

Processes the result of an asynchronous operation. These are function objects, often created using boost::bind.

— Asynchronous Event Demultiplexer

Blocks waiting for events to occur on the completion event queue, and returns a completed event to its caller.

— Proactor

Calls the asynchronous event demultiplexer to dequeue events, and dispatches the completion handler (i.e. invokes
the function object) associated with the event. This abstraction is represented by the io_service class.

— Initiator

Application-specific code that starts asynchronous operations. The initiator interacts with an asynchronous operation
processor via a high-level interface such as basic_stream_socket, which in turn delegates to a service like
stream_socket_service.

6

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementation Using Reactor

On many platforms, Boost.Asio implements the Proactor design pattern in terms of a Reactor, such as select, epoll or kqueue.
This implementation approach corresponds to the Proactor design pattern as follows:

— Asynchronous Operation Processor

A reactor implemented using select, epoll or kqueue. When the reactor indicates that the resource is ready to
perform the operation, the processor executes the asynchronous operation and enqueues the associated completion
handler on the completion event queue.

— Completion Event Queue

A linked list of completion handlers (i.e. function objects).

— Asynchronous Event Demultiplexer

This is implemented by waiting on an event or condition variable until a completion handler is available in the
completion event queue.

Implementation Using Windows Overlapped I/O

On Windows NT, 2000 and XP, Boost.Asio takes advantage of overlapped I/O to provide an efficient implementation of the Proactor
design pattern. This implementation approach corresponds to the Proactor design pattern as follows:

— Asynchronous Operation Processor

This is implemented by the operating system. Operations are initiated by calling an overlapped function such as
AcceptEx.

— Completion Event Queue

This is implemented by the operating system, and is associated with an I/O completion port. There is one I/O
completion port for each io_service instance.

— Asynchronous Event Demultiplexer

Called by Boost.Asio to dequeue events and their associated completion handlers.

Advantages

— Portability.

Many operating systems offer a native asynchronous I/O API (such as overlapped I/O on Windows) as the preferred
option for developing high performance network applications. The library may be implemented in terms of native
asynchronous I/O. However, if native support is not available, the library may also be implemented using synchron-
ous event demultiplexors that typify the Reactor pattern, such as POSIX select().

— Decoupling threading from concurrency.

Long-duration operations are performed asynchronously by the implementation on behalf of the application.
Consequently applications do not need to spawn many threads in order to increase concurrency.

— Performance and scalability.

Implementation strategies such as thread-per-connection (which a synchronous-only approach would require) can
degrade system performance, due to increased context switching, synchronisation and data movement among
CPUs. With asynchronous operations it is possible to avoid the cost of context switching by minimising the number
of operating system threads — typically a limited resource — and only activating the logical threads of control
that have events to process.

7

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

— Simplified application synchronisation.

Asynchronous operation completion handlers can be written as though they exist in a single-threaded environment,
and so application logic can be developed with little or no concern for synchronisation issues.

— Function composition.

Function composition refers to the implementation of functions to provide a higher-level operation, such as sending
a message in a particular format. Each function is implemented in terms of multiple calls to lower-level read or
write operations.

For example, consider a protocol where each message consists of a fixed-length header followed by a variable
length body, where the length of the body is specified in the header. A hypothetical read_message operation could
be implemented using two lower-level reads, the first to receive the header and, once the length is known, the
second to receive the body.

To compose functions in an asynchronous model, asynchronous operations can be chained together. That is, a
completion handler for one operation can initiate the next. Starting the first call in the chain can be encapsulated
so that the caller need not be aware that the higher-level operation is implemented as a chain of asynchronous op-
erations.

The ability to compose new operations in this way simplifies the development of higher levels of abstraction above
a networking library, such as functions to support a specific protocol.

Disadvantages

— Program complexity.

It is more difficult to develop applications using asynchronous mechanisms due to the separation in time and space
between operation initiation and completion. Applications may also be harder to debug due to the inverted flow
of control.

— Memory usage.

Buffer space must be committed for the duration of a read or write operation, which may continue indefinitely,
and a separate buffer is required for each concurrent operation. The Reactor pattern, on the other hand, does not
require buffer space until a socket is ready for reading or writing.

References

[POSA2] D. Schmidt et al, Pattern Oriented Software Architecture, Volume 2. Wiley, 2000.

Threads and Boost.Asio

Thread Safety

In general, it is safe to make concurrent use of distinct objects, but unsafe to make concurrent use of a single object. However, types
such as io_service provide a stronger guarantee that it is safe to use a single object concurrently.

Thread Pools

Multiple threads may call io_service::run() to set up a pool of threads from which completion handlers may be invoked. This
approach may also be used with io_service::post() to use a means to perform any computational tasks across a thread pool.

Note that all threads that have joined an io_service's pool are considered equivalent, and the io_service may distribute work
across them in an arbitrary fashion.

Internal Threads

The implementation of this library for a particular platform may make use of one or more internal threads to emulate asynchronicity.
As far as possible, these threads must be invisible to the library user. In particular, the threads:

8

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• must not call the user's code directly; and

• must block all signals.

Note

The implementation currently violates the first of these rules for the following functions:

— ip::basic_resolver::async_resolve() on all platforms.

— basic_socket::async_connect() on Windows.

— Any operation involving null_buffers() on Windows, other than an asynchronous read performed on a stream-
oriented socket.

This approach is complemented by the following guarantee:

• Asynchronous completion handlers will only be called from threads that are currently calling io_service::run().

Consequently, it is the library user's responsibility to create and manage all threads to which the notifications will be delivered.

The reasons for this approach include:

• By only calling io_service::run() from a single thread, the user's code can avoid the development complexity associated
with synchronisation. For example, a library user can implement scalable servers that are single-threaded (from the user's point
of view).

• A library user may need to perform initialisation in a thread shortly after the thread starts and before any other application code
is executed. For example, users of Microsoft's COM must call CoInitializeEx before any other COM operations can be called
from that thread.

• The library interface is decoupled from interfaces for thread creation and management, and permits implementations on platforms
where threads are not available.

See Also

io_service.

Strands: Use Threads Without Explicit Locking

A strand is defined as a strictly sequential invocation of event handlers (i.e. no concurrent invocation). Use of strands allows execution
of code in a multithreaded program without the need for explicit locking (e.g. using mutexes).

Strands may be either implicit or explicit, as illustrated by the following alternative approaches:

• Calling io_service::run() from only one thread means all event handlers execute in an implicit strand, due to the io_service's
guarantee that handlers are only invoked from inside run().

• Where there is a single chain of asynchronous operations associated with a connection (e.g. in a half duplex protocol implement-
ation like HTTP) there is no possibility of concurrent execution of the handlers. This is an implicit strand.

• An explicit strand is an instance of io_service::strand. All event handler function objects need to be wrapped using
io_service::strand::wrap() or otherwise posted/dispatched through the io_service::strand object.

In the case of composed asynchronous operations, such as async_read() or async_read_until(), if a completion handler goes
through a strand, then all intermediate handlers should also go through the same strand. This is needed to ensure thread safe access
for any objects that are shared between the caller and the composed operation (in the case of async_read() it's the socket, which
the caller can close() to cancel the operation). This is done by having hook functions for all intermediate handlers which forward the
calls to the customisable hook associated with the final handler:

9

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct my_handler
{
void operator()() { ... }

};

template<class F>
void asio_handler_invoke(F f, my_handler*)
{
// Do custom invocation here.
// Default implementation calls f();

}

The io_service::strand::wrap() function creates a new completion handler that defines asio_handler_invoke so that the
function object is executed through the strand.

See Also

io_service::strand, tutorial Timer.5, HTTP server 3 example.

Buffers

Fundamentally, I/O involves the transfer of data to and from contiguous regions of memory, called buffers. These buffers can be
simply expressed as a tuple consisting of a pointer and a size in bytes. However, to allow the development of efficient network ap-
plications, Boost.Asio includes support for scatter-gather operations. These operations involve one or more buffers:

• A scatter-read receives data into multiple buffers.

• A gather-write transmits multiple buffers.

Therefore we require an abstraction to represent a collection of buffers. The approach used in Boost.Asio is to define a type (actually
two types) to represent a single buffer. These can be stored in a container, which may be passed to the scatter-gather operations.

In addition to specifying buffers as a pointer and size in bytes, Boost.Asio makes a distinction between modifiable memory (called
mutable) and non-modifiable memory (where the latter is created from the storage for a const-qualified variable). These two types
could therefore be defined as follows:

typedef std::pair<void*, std::size_t> mutable_buffer;
typedef std::pair<const void*, std::size_t> const_buffer;

Here, a mutable_buffer would be convertible to a const_buffer, but conversion in the opposite direction is not valid.

However, Boost.Asio does not use the above definitions as-is, but instead defines two classes: mutable_buffer and const_buffer.
The goal of these is to provide an opaque representation of contiguous memory, where:

• Types behave as std::pair would in conversions. That is, a mutable_buffer is convertible to a const_buffer, but the opposite
conversion is disallowed.

• There is protection against buffer overruns. Given a buffer instance, a user can only create another buffer representing the same
range of memory or a sub-range of it. To provide further safety, the library also includes mechanisms for automatically determining
the size of a buffer from an array, boost::array or std::vector of POD elements, or from a std::string.

• Type safety violations must be explicitly requested using the buffer_cast function. In general an application should never need
to do this, but it is required by the library implementation to pass the raw memory to the underlying operating system functions.

Finally, multiple buffers can be passed to scatter-gather operations (such as read() or write()) by putting the buffer objects into a
container. The MutableBufferSequence and ConstBufferSequence concepts have been defined so that containers such as
std::vector, std::list, std::vector or boost::array can be used.

10

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Streambuf for Integration with Iostreams

The class boost::asio::basic_streambuf is derived from std::basic_streambuf to associate the input sequence and output
sequence with one or more objects of some character array type, whose elements store arbitrary values. These character array objects
are internal to the streambuf object, but direct access to the array elements is provided to permit them to be used with I/O operations,
such as the send or receive operations of a socket:

• The input sequence of the streambuf is accessible via the data() member function. The return type of this function meets the
ConstBufferSequence requirements.

• The output sequence of the streambuf is accessible via the prepare() member function. The return type of this function meets the
MutableBufferSequence requirements.

• Data is transferred from the front of the output sequence to the back of the input sequence by calling the commit() member function.

• Data is removed from the front of the input sequence by calling the consume() member function.

The streambuf constructor accepts a size_t argument specifying the maximum of the sum of the sizes of the input sequence and
output sequence. Any operation that would, if successful, grow the internal data beyond this limit will throw a std::length_error
exception.

Bytewise Traversal of Buffer Sequences

The buffers_iterator<> class template allows buffer sequences (i.e. types meeting MutableBufferSequence or ConstBuf-
ferSequence requirements) to be traversed as though they were a contiguous sequence of bytes. Helper functions called buffers_be-
gin() and buffers_end() are also provided, where the buffers_iterator<> template parameter is automatically deduced.

As an example, to read a single line from a socket and into a std::string, you may write:

boost::asio::streambuf sb;
...
std::size_t n = boost::asio::read_until(sock, sb, '\n');
boost::asio::streambuf::const_buffers_type bufs = sb.data();
std::string line(
 boost::asio::buffers_begin(bufs),
 boost::asio::buffers_begin(bufs) + n);

Buffer Debugging

Some standard library implementations, such as the one that ships with Microsoft Visual C++ 8.0 and later, provide a feature called
iterator debugging. What this means is that the validity of iterators is checked at runtime. If a program tries to use an iterator that
has been invalidated, an assertion will be triggered. For example:

std::vector<int> v(1)
std::vector<int>::iterator i = v.begin();
v.clear(); // invalidates iterators
*i = 0; // assertion!

Boost.Asio takes advantage of this feature to add buffer debugging. Consider the following code:

void dont_do_this()
{
 std::string msg = "Hello, world!";
 boost::asio::async_write(sock, boost::asio::buffer(msg), my_handler);
}

When you call an asynchronous read or write you need to ensure that the buffers for the operation are valid until the completion
handler is called. In the above example, the buffer is the std::string variable msg. This variable is on the stack, and so it goes

11

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

out of scope before the asynchronous operation completes. If you're lucky then the application will crash, but random failures are
more likely.

When buffer debugging is enabled, Boost.Asio stores an iterator into the string until the asynchronous operation completes, and then
dereferences it to check its validity. In the above example you would observe an assertion failure just before Boost.Asio tries to call
the completion handler.

This feature is automatically made available for Microsoft Visual Studio 8.0 or later and for GCC when _GLIBCXX_DEBUG is defined.
There is a performance cost to this checking, so buffer debugging is only enabled in debug builds. For other compilers it may be
enabled by defining BOOST_ASIO_ENABLE_BUFFER_DEBUGGING. It can also be explicitly disabled by defining
BOOST_ASIO_DISABLE_BUFFER_DEBUGGING.

See Also

buffer, buffers_begin, buffers_end, buffers_iterator, const_buffer, const_buffers_1, mutable_buffer, mutable_buffers_1, streambuf,
ConstBufferSequence, MutableBufferSequence, buffers example.

Streams, Short Reads and Short Writes

Many I/O objects in Boost.Asio are stream-oriented. This means that:

• There are no message boundaries. The data being transferred is a continuous sequence of bytes.

• Read or write operations may transfer fewer bytes than requested. This is referred to as a short read or short write.

Objects that provide stream-oriented I/O model one or more of the following type requirements:

• SyncReadStream, where synchronous read operations are performed using a member function called read_some().

• AsyncReadStream, where asynchronous read operations are performed using a member function called async_read_some().

• SyncWriteStream, where synchronous write operations are performed using a member function called write_some().

• AsyncWriteStream, where synchronous write operations are performed using a member function called async_write_some().

Examples of stream-oriented I/O objects include ip::tcp::socket, ssl::stream<>, posix::stream_descriptor, win-
dows::stream_handle, etc.

Programs typically want to transfer an exact number of bytes. When a short read or short write occurs the program must restart the
operation, and continue to do so until the required number of bytes has been transferred. Boost.Asio provides generic functions that
do this automatically: read(), async_read(), write() and async_write().

Why EOF is an Error

• The end of a stream can cause read, async_read, read_until or async_read_until functions to violate their contract. E.g.
a read of N bytes may finish early due to EOF.

• An EOF error may be used to distinguish the end of a stream from a successful read of size 0.

See Also

async_read(), async_write(), read(), write(), AsyncReadStream, AsyncWriteStream, SyncReadStream, SyncWriteStream.

Reactor-Style Operations

Sometimes a program must be integrated with a third-party library that wants to perform the I/O operations itself. To facilitate this,
Boost.Asio includes a null_buffers type that can be used with both read and write operations. A null_buffers operation doesn't
return until the I/O object is "ready" to perform the operation.

As an example, to perform a non-blocking read something like the following may be used:

12

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::tcp::socket socket(my_io_service);
...
ip::tcp::socket::non_blocking nb(true);
socket.io_control(nb);
...
socket.async_read_some(null_buffers(), read_handler);
...
void read_handler(boost::system::error_code ec)
{
if (!ec)
{

 std::vector<char> buf(socket.available());
 socket.read_some(buffer(buf));
}

}

These operations are supported for sockets on all platforms, and for the POSIX stream-oriented descriptor classes.

See Also

null_buffers, nonblocking example.

Line-Based Operations

Many commonly-used internet protocols are line-based, which means that they have protocol elements that are delimited by the
character sequence "\r\n". Examples include HTTP, SMTP and FTP. To more easily permit the implementation of line-based
protocols, as well as other protocols that use delimiters, Boost.Asio includes the functions read_until() and async_read_until().

The following example illustrates the use of async_read_until() in an HTTP server, to receive the first line of an HTTP request
from a client:

13

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class http_connection
{
...

void start()
{

 boost::asio::async_read_until(socket_, data_, "\r\n",
 boost::bind(&http_connection::handle_request_line, this, _1));
}

void handle_request_line(boost::system::error_code ec)
{
if (!ec)
{

 std::string method, uri, version;
char sp1, sp2, cr, lf;

 std::istream is(&data_);
 is.unsetf(std::ios_base::skipws);
 is >> method >> sp1 >> uri >> sp2 >> version >> cr >> lf;

...
}

}

...

 boost::asio::ip::tcp::socket socket_;
 boost::asio::streambuf data_;
};

The streambuf data member serves as a place to store the data that has been read from the socket before it is searched for the de-
limiter. It is important to remember that there may be additional data after the delimiter. This surplus data should be left in the
streambuf so that it may be inspected by a subsequent call to read_until() or async_read_until().

The delimiters may be specified as a single char, a std::string or a boost::regex. The read_until() and
async_read_until() functions also include overloads that accept a user-defined function object called a match condition. For
example, to read data into a streambuf until whitespace is encountered:

typedef boost::asio::buffers_iterator<
 boost::asio::streambuf::const_buffers_type> iterator;

std::pair<iterator, bool>
match_whitespace(iterator begin, iterator end)
{
 iterator i = begin;
while (i != end)
if (std::isspace(*i++))

return std::make_pair(i, true);
return std::make_pair(i, false);

}
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_whitespace);

To read data into a streambuf until a matching character is found:

14

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class match_char
{
public:
explicit match_char(char c) : c_(c) {}

template <typename Iterator>
 std::pair<Iterator, bool> operator()(
 Iterator begin, Iterator end) const
{

 Iterator i = begin;
while (i != end)

if (c_ == *i++)
return std::make_pair(i, true);

return std::make_pair(i, false);
}

private:
char c_;

};

namespace boost { namespace asio {
template <> struct is_match_condition<match_char>
: public boost::true_type {};

} } // namespace boost::asio
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_char('a'));

The is_match_condition<> type trait automatically evaluates to true for functions, and for function objects with a nested res-
ult_type typedef. For other types the trait must be explicitly specialised, as shown above.

See Also

async_read_until(), is_match_condition, read_until(), streambuf, HTTP client example.

Custom Memory Allocation

Many asynchronous operations need to allocate an object to store state associated with the operation. For example, a Win32 imple-
mentation needs OVERLAPPED-derived objects to pass to Win32 API functions.

Furthermore, programs typically contain easily identifiable chains of asynchronous operations. A half duplex protocol implementation
(e.g. an HTTP server) would have a single chain of operations per client (receives followed by sends). A full duplex protocol imple-
mentation would have two chains executing in parallel. Programs should be able to leverage this knowledge to reuse memory for
all asynchronous operations in a chain.

Given a copy of a user-defined Handler object h, if the implementation needs to allocate memory associated with that handler it
will execute the code:

void* pointer = asio_handler_allocate(size, &h);

Similarly, to deallocate the memory it will execute:

asio_handler_deallocate(pointer, size, &h);

These functions are located using argument-dependent lookup. The implementation provides default implementations of the above
functions in the asio namespace:

15

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void* asio_handler_allocate(size_t, ...);
void asio_handler_deallocate(void*, size_t, ...);

which are implemented in terms of ::operator new() and ::operator delete() respectively.

The implementation guarantees that the deallocation will occur before the associated handler is invoked, which means the memory
is ready to be reused for any new asynchronous operations started by the handler.

The custom memory allocation functions may be called from any user-created thread that is calling a library function. The imple-
mentation guarantees that, for the asynchronous operations included the library, the implementation will not make concurrent calls
to the memory allocation functions for that handler. The implementation will insert appropriate memory barriers to ensure correct
memory visibility should allocation functions need to be called from different threads.

Custom memory allocation support is currently implemented for all asynchronous operations with the following exceptions:

• ip::basic_resolver::async_resolve() on all platforms.

• basic_socket::async_connect() on Windows.

• Any operation involving null_buffers() on Windows, other than an asynchronous read performed on a stream-oriented
socket.

See Also

asio_handler_allocate, asio_handler_deallocate, custom memory allocation example.

Networking
• TCP, UDP and ICMP

• Socket Iostreams

• The BSD Socket API and Boost.Asio

TCP, UDP and ICMP

Boost.Asio provides off-the-shelf support for the internet protocols TCP, UDP and ICMP.

TCP Clients

Hostname resolution is performed using a resolver, where host and service names are looked up and converted into one or more en-
dpoints:

ip::tcp::resolver resolver(my_io_service);
ip::tcp::resolver::query query("www.boost.org", "http");
ip::tcp::resolver::iterator iter = resolver.resolve(query);
ip::tcp::resolver::iterator end; // End marker.
while (iter != end)
{
 ip::tcp::endpoint endpoint = *iter++;
 std::cout << endpoint << std::endl;
}

The list of endpoints obtained above could contain both IPv4 and IPv6 endpoints, so a program may try each of them until it finds
one that works. This keeps the client program independent of a specific IP version.

When an endpoint is available, a socket can be created and connected:

16

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::tcp::socket socket(my_io_service);
socket.connect(endpoint);

Data may be read from or written to a connected TCP socket using the receive(), async_receive(), send() or async_send() member
functions. However, as these could result in short writes or reads, an application will typically use the following operations instead:
read(), async_read(), write() and async_write().

TCP Servers

A program uses an acceptor to accept incoming TCP connections:

ip::tcp::acceptor acceptor(my_io_service, my_endpoint);
...
ip::tcp::socket socket(my_io_service);
acceptor.accept(socket);

After a socket has been successfully accepted, it may be read from or written to as illustrated for TCP clients above.

UDP

UDP hostname resolution is also performed using a resolver:

ip::udp::resolver resolver(my_io_service);
ip::udp::resolver::query query("localhost", "daytime");
ip::udp::resolver::iterator iter = resolver.resolve(query);
...

A UDP socket is typically bound to a local endpoint. The following code will create an IP version 4 UDP socket and bind it to the
"any" address on port 12345:

ip::udp::endpoint endpoint(ip::udp::v4(), 12345);
ip::udp::socket socket(my_io_service, endpoint);

Data may be read from or written to an unconnected UDP socket using the receive_from(), async_receive_from(), send_to() or
async_send_to() member functions. For a connected UDP socket, use the receive(), async_receive(), send() or async_send() member
functions.

ICMP

As with TCP and UDP, ICMP hostname resolution is performed using a resolver:

ip::icmp::resolver resolver(my_io_service);
ip::icmp::resolver::query query("localhost", "daytime");
ip::icmp::resolver::iterator iter = resolver.resolve(query);
...

An ICMP socket may be bound to a local endpoint. The following code will create an IP version 6 ICMP socket and bind it to the
"any" address:

ip::icmp::endpoint endpoint(ip::icmp::v6(), 0);
ip::icmp::socket socket(my_io_service, endpoint);

The port number is not used for ICMP.

Data may be read from or written to an unconnected ICMP socket using the receive_from(), async_receive_from(), send_to() or
async_send_to() member functions. For a connected ICMP socket, use the receive(), async_receive(), send() or async_send() member
functions.

17

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Other Protocols

Support for other socket protocols (such as Bluetooth or IRCOMM sockets) can be added by implementing the Protocol type require-
ments.

See Also

ip::tcp, ip::udp, ip::icmp, daytime protocol tutorials.

Socket Iostreams

Boost.Asio includes classes that implement iostreams on top of sockets. These hide away the complexities associated with endpoint
resolution, protocol independence, etc. To create a connection one might simply write:

ip::tcp::iostream stream("www.boost.org", "http");
if (!stream)
{
// Can't connect.

}

The iostream class can also be used in conjunction with an acceptor to create simple servers. For example:

io_service ios;

ip::tcp::endpoint endpoint(tcp::v4(), 80);
ip::tcp::acceptor acceptor(ios, endpoint);

for (;;)
{
 ip::tcp::iostream stream;
 acceptor.accept(*stream.rdbuf());
...

}

See Also

ip::tcp::iostream, basic_socket_iostream, iostreams examples.

Notes

These iostream templates only support char, not wchar_t, and do not perform any code conversion.

The BSD Socket API and Boost.Asio

The Boost.Asio library includes a low-level socket interface based on the BSD socket API, which is widely implemented and sup-
ported by extensive literature. It is also used as the basis for networking APIs in other languages, like Java. This low-level interface
is designed to support the development of efficient and scalable applications. For example, it permits programmers to exert finer
control over the number of system calls, avoid redundant data copying, minimise the use of resources like threads, and so on.

Unsafe and error prone aspects of the BSD socket API not included. For example, the use of int to represent all sockets lacks type
safety. The socket representation in Boost.Asio uses a distinct type for each protocol, e.g. for TCP one would use
ip::tcp::socket, and for UDP one uses ip::udp::socket.

The following table shows the mapping between the BSD socket API and Boost.Asio:

18

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalents in Boost.AsioBSD Socket API Elements

For TCP: ip::tcp::socket, ip::tcp::acceptorsocket descriptor - int (POSIX) or SOCKET (Windows)

For UDP: ip::udp::socket

basic_socket, basic_stream_socket, basic_datagram_socket,
basic_raw_socket

ip::address, ip::address_v4, ip::address_v6in_addr, in6_addr

For TCP: ip::tcp::endpointsockaddr_in, sockaddr_in6

For UDP: ip::udp::endpoint

ip::basic_endpoint

For TCP: ip::tcp::acceptor::accept()accept()

basic_socket_acceptor::accept()

For TCP: ip::tcp::acceptor::bind(), ip::tcp::socket::bind()bind()

For UDP: ip::udp::socket::bind()

basic_socket::bind()

For TCP: ip::tcp::acceptor::close(), ip::tcp::socket::close()close()

For UDP: ip::udp::socket::close()

basic_socket::close()

For TCP: ip::tcp::socket::connect()connect()

For UDP: ip::udp::socket::connect()

basic_socket::connect()

For TCP: ip::tcp::resolver::resolve(), ip::tcp::resolver::async_re-
solve()

getaddrinfo(), gethostbyaddr(), gethostbyname(),
getnameinfo(), getservbyname(), getservbyport()

For UDP: ip::udp::resolver::resolve(), ip::udp::resolver::async_re-
solve()

ip::basic_resolver::resolve(), ip::basic_resolver::async_resolve()

ip::host_name()gethostname()

For TCP: ip::tcp::socket::remote_endpoint()getpeername()

For UDP: ip::udp::socket::remote_endpoint()

basic_socket::remote_endpoint()

19

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalents in Boost.AsioBSD Socket API Elements

For TCP: ip::tcp::acceptor::local_endpoint(), ip::tcp::socket::loc-
al_endpoint()

For UDP: ip::udp::socket::local_endpoint()

basic_socket::local_endpoint()

getsockname()

For TCP: ip::tcp::acceptor::get_option(), ip::tcp::socket::get_op-
tion()

For UDP: ip::udp::socket::get_option()

basic_socket::get_option()

getsockopt()

ip::address::from_string(), ip::address_v4::from_string(),
ip_address_v6::from_string()

inet_addr(), inet_aton(), inet_pton()

ip::address::to_string(), ip::address_v4::to_string(), ip_ad-
dress_v6::to_string()

inet_ntoa(), inet_ntop()

For TCP: ip::tcp::socket::io_control()

For UDP: ip::udp::socket::io_control()

basic_socket::io_control()

ioctl()

For TCP: ip::tcp::acceptor::listen()

basic_socket_acceptor::listen()

listen()

io_service::run(), io_service::run_one(), io_service::poll(),
io_service::poll_one()

Note: in conjunction with asynchronous operations.

poll(), select(), pselect()

For TCP: ip::tcp::socket::read_some(), ip::tcp::sock-
et::async_read_some(), ip::tcp::socket::receive(), ip::tcp::sock-
et::async_receive()

For UDP: ip::udp::socket::receive(), ip::udp::socket::async_re-
ceive()

basic_stream_socket::read_some(), basic_stream_sock-
et::async_read_some(), basic_stream_socket::receive(), ba-
sic_stream_socket::async_receive(), basic_datagram_socket::re-
ceive(), basic_datagram_socket::async_receive()

readv(), recv(), read()

For UDP: ip::udp::socket::receive_from(), ip::udp::sock-
et::async_receive_from()

basic_datagram_socket::receive_from(), basic_datagram_sock-
et::async_receive_from()

recvfrom()

20

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalents in Boost.AsioBSD Socket API Elements

For TCP: ip::tcp::socket::write_some(), ip::tcp::sock-
et::async_write_some(), ip::tcp::socket::send(), ip::tcp::sock-
et::async_send()

For UDP: ip::udp::socket::send(), ip::udp::socket::async_send()

basic_stream_socket::write_some(), basic_stream_sock-
et::async_write_some(), basic_stream_socket::send(), ba-
sic_stream_socket::async_send(), basic_datagram_sock-
et::send(), basic_datagram_socket::async_send()

send(), write(), writev()

For UDP: ip::udp::socket::send_to(), ip::udp::sock-
et::async_send_to()

basic_datagram_socket::send_to(), basic_datagram_sock-
et::async_send_to()

sendto()

For TCP: ip::tcp::acceptor::set_option(), ip::tcp::socket::set_op-
tion()

For UDP: ip::udp::socket::set_option()

basic_socket::set_option()

setsockopt()

For TCP: ip::tcp::socket::shutdown()

For UDP: ip::udp::socket::shutdown()

basic_socket::shutdown()

shutdown()

For TCP: ip::tcp::socket::at_mark()

basic_socket::at_mark()

sockatmark()

For TCP: ip::tcp::acceptor::open(), ip::tcp::socket::open()

For UDP: ip::udp::socket::open()

basic_socket::open()

socket()

local::connect_pair()

Note: POSIX operating systems only.

socketpair()

Timers
Long running I/O operations will often have a deadline by which they must have completed. These deadlines may be expressed as
absolute times, but are often calculated relative to the current time.

As a simple example, to perform a synchronous wait operation on a timer using a relative time one may write:

21

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service i;
...
deadline_timer t(i);
t.expires_from_now(boost::posix_time::seconds(5));
t.wait();

More commonly, a program will perform an asynchronous wait operation on a timer:

void handler(boost::system::error_code ec) { ... }
...
io_service i;
...
deadline_timer t(i);
t.expires_from_now(boost::posix_time::milliseconds(400));
t.async_wait(handler);
...
i.run();

The deadline associated with a timer may be also be obtained as a relative time:

boost::posix_time::time_duration time_until_expiry
= t.expires_from_now();

or as an absolute time to allow composition of timers:

deadline_timer t2(i);
t2.expires_at(t.expires_at() + boost::posix_time::seconds(30));

See Also

basic_deadline_timer, deadline_timer, deadline_timer_service, timer tutorials.

Serial Ports
Boost.Asio includes classes for creating and manipulating serial ports in a portable manner. For example, a serial port may be opened
using:

serial_port port(my_io_service, name);

where name is something like "COM1" on Windows, and "/dev/ttyS0" on POSIX platforms.

Once opened the serial port may be used as a stream. This means the objects can be used with any of the read(), async_read(), write(),
async_write(), read_until() or async_read_until() free functions.

The serial port implementation also includes option classes for configuring the port's baud rate, flow control type, parity, stop bits
and character size.

See Also

serial_port, serial_port_base, basic_serial_port, serial_port_service, serial_port_base::baud_rate, serial_port_base::flow_control,
serial_port_base::parity, serial_port_base::stop_bits, serial_port_base::character_size.

22

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notes

Serial ports are available on all POSIX platforms. For Windows, serial ports are only available at compile time when the I/O com-
pletion port backend is used (which is the default). A program may test for the macro BOOST_ASIO_HAS_SERIAL_PORTS to determine
whether they are supported.

POSIX-Specific Functionality
UNIX Domain Sockets

Stream-Oriented File Descriptors

UNIX Domain Sockets

Boost.Asio provides basic support UNIX domain sockets (also known as local sockets). The simplest use involves creating a pair
of connected sockets. The following code:

local::stream_protocol::socket socket1(my_io_service);
local::stream_protocol::socket socket2(my_io_service);
local::connect_pair(socket1, socket2);

will create a pair of stream-oriented sockets. To do the same for datagram-oriented sockets, use:

local::datagram_protocol::socket socket1(my_io_service);
local::datagram_protocol::socket socket2(my_io_service);
local::connect_pair(socket1, socket2);

A UNIX domain socket server may be created by binding an acceptor to an endpoint, in much the same way as one does for a TCP
server:

::unlink("/tmp/foobar"); // Remove previous binding.
local::stream_protocol::endpoint ep("/tmp/foobar");
local::stream_protocol::acceptor acceptor(my_io_service, ep);
local::stream_protocol::socket socket(my_io_service);
acceptor.accept(socket);

A client that connects to this server might look like:

local::stream_protocol::endpoint ep("/tmp/foobar");
local::stream_protocol::socket socket(my_io_service);
socket.connect(ep);

Transmission of file descriptors or credentials across UNIX domain sockets is not directly supported within Boost.Asio, but may be
achieved by accessing the socket's underlying descriptor using the native() member function.

See Also

local::connect_pair, local::datagram_protocol, local::datagram_protocol::endpoint, local::datagram_protocol::socket, local::stream_pro-
tocol, local::stream_protocol::acceptor, local::stream_protocol::endpoint, local::stream_protocol::iostream, local::stream_protocol::sock-
et, UNIX domain sockets examples.

Notes

UNIX domain sockets are only available at compile time if supported by the target operating system. A program may test for the
macro BOOST_ASIO_HAS_LOCAL_SOCKETS to determine whether they are supported.

23

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Stream-Oriented File Descriptors

Boost.Asio includes classes added to permit synchronous and asynchronous read and write operations to be performed on POSIX
file descriptors, such as pipes, standard input and output, and various devices (but not regular files).

For example, to perform read and write operations on standard input and output, the following objects may be created:

posix::stream_descriptor in(my_io_service, ::dup(STDIN_FILENO));
posix::stream_descriptor out(my_io_service, ::dup(STDOUT_FILENO));

These are then used as synchronous or asynchronous read and write streams. This means the objects can be used with any of the
read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

See Also

posix::stream_descriptor, posix::basic_stream_descriptor, posix::stream_descriptor_service, Chat example.

Notes

POSIX stream descriptors are only available at compile time if supported by the target operating system. A program may test for
the macro BOOST_ASIO_HAS_POSIX_STREAM_DESCRIPTOR to determine whether they are supported.

Windows-Specific Functionality
Stream-Oriented HANDLEs

Random-Access HANDLEs

Stream-Oriented HANDLEs

Boost.Asio contains classes to allow asynchronous read and write operations to be performed on Windows HANDLEs, such as named
pipes.

For example, to perform asynchronous operations on a named pipe, the following object may be created:

HANDLE handle = ::CreateFile(...);
windows::stream_handle pipe(my_io_service, handle);

These are then used as synchronous or asynchronous read and write streams. This means the objects can be used with any of the
read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

The kernel object referred to by the HANDLE must support use with I/O completion ports (which means that named pipes are supported,
but anonymous pipes and console streams are not).

See Also

windows::stream_handle, windows::basic_stream_handle, windows::stream_handle_service.

Notes

Windows stream HANDLEs are only available at compile time when targeting Windows and only when the I/O completion port
backend is used (which is the default). A program may test for the macro BOOST_ASIO_HAS_WINDOWS_STREAM_HANDLE to determine
whether they are supported.

Random-Access HANDLEs

Boost.Asio provides Windows-specific classes that permit asynchronous read and write operations to be performed on HANDLEs
that refer to regular files.

24

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For example, to perform asynchronous operations on a file the following object may be created:

HANDLE handle = ::CreateFile(...);
windows::random_access_handle file(my_io_service, handle);

Data may be read from or written to the handle using one of the read_some_at(), async_read_some_at(), write_some_at()
or async_write_some_at() member functions. However, like the equivalent functions (read_some(), etc.) on streams, these
functions are only required to transfer one or more bytes in a single operation. Therefore free functions called read_at(), async_read_at(),
write_at() and async_write_at() have been created to repeatedly call the corresponding *_some_at() function until all data has
been transferred.

See Also

windows::random_access_handle, windows::basic_random_access_handle, windows::random_access_handle_service.

Notes

Windows random-access HANDLEs are only available at compile time when targeting Windows and only when the I/O completion
port backend is used (which is the default). A program may test for the macro BOOST_ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE
to determine whether they are supported.

SSL
Boost.Asio contains classes and class templates for basic SSL support. These classes allow encrypted communication to be layered
on top of an existing stream, such as a TCP socket.

Before creating an encrypted stream, an application must construct an SSL context object. This object is used to set SSL options
such as verification mode, certificate files, and so on. As an illustration, client-side initialisation may look something like:

ssl::context ctx(my_io_service, ssl::context::sslv23);
ctx.set_verify_mode(ssl::context::verify_peer);
ctx.load_verify_file("ca.pem");

To use SSL with a TCP socket, one may write:

ssl::stream<ip::tcp::socket> ssl_sock(my_io_service, ctx);

To perform socket-specific operations, such as establishing an outbound connection or accepting an incoming one, the underlying
socket must first be obtained using the ssl::stream template's lowest_layer() member function:

ip::tcp::socket::lowest_layer_type& sock = ssl_sock.lowest_layer();
sock.connect(my_endpoint);

In some use cases the underlying stream object will need to have a longer lifetime than the SSL stream, in which case the template
parameter should be a reference to the stream type:

ip::tcp::socket sock(my_io_service);
ssl::stream<ip::tcp::socket&> ssl_sock(sock, ctx);

SSL handshaking must be performed prior to transmitting or receiving data over an encrypted connection. This is accomplished using
the ssl::stream template's handshake() or async_handshake() member functions.

Once connected, SSL stream objects are used as synchronous or asynchronous read and write streams. This means the objects can
be used with any of the read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

25

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See Also

ssl::basic_context, ssl::context, ssl::context_base, ssl::context_service, ssl::stream, ssl::stream_base, ssl::stream_service, SSL example.

Notes

OpenSSL is required to make use of Boost.Asio's SSL support. When an application needs to use OpenSSL functionality that is not
wrapped by Boost.Asio, the underlying OpenSSL types may be obtained by calling ssl::context::impl() or
ssl::stream::impl().

Platform-Specific Implementation Notes
This section lists platform-specific implementation details, such as the default demultiplexing mechanism, the number of threads
created internally, and when threads are created.

Linux Kernel 2.4

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Linux Kernel 2.6

Demultiplexing mechanism:

• Uses epoll for demultiplexing.

Threads:

• Demultiplexing using epoll is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Solaris

Demultiplexing mechanism:

• Uses /dev/poll for demultiplexing.

Threads:

26

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.openssl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Demultiplexing using /dev/poll is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

QNX Neutrino

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Mac OS X

Demultiplexing mechanism:

• Uses kqueue for demultiplexing.

Threads:

• Demultiplexing using kqueue is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

FreeBSD

Demultiplexing mechanism:

• Uses kqueue for demultiplexing.

Threads:

• Demultiplexing using kqueue is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

27

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

AIX

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

HP-UX

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Tru64

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

28

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Windows 95, 98 and Me

Demultiplexing mechanism:

• Uses select for demultiplexing.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• For sockets, at most 16 buffers may be transferred in a single operation.

Windows NT, 2000, XP, 2003 and Vista

Demultiplexing mechanism:

• Uses overlapped I/O and I/O completion ports for all asynchronous socket operations except for asynchronous connect.

• Uses select for emulating asynchronous connect.

Threads:

• Demultiplexing using I/O completion ports is performed in all threads that call io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used for the select demultiplexing. This thread is created on the first call to
async_connect().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• For sockets, at most 64 buffers may be transferred in a single operation.

• For stream-oriented handles, only one buffer may be transferred in a single operation.

Using Boost.Asio
Supported Platforms

The following platforms and compilers have been tested:

• Win32 and Win64 using Visual C++ 7.1 and Visual C++ 8.0.

• Win32 using MinGW.

• Win32 using Cygwin. (__USE_W32_SOCKETS must be defined.)

• Linux (2.4 or 2.6 kernels) using g++ 3.3 or later.

• Solaris using g++ 3.3 or later.

• Mac OS X 10.4 using g++ 3.3 or later.

29

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The following platforms may also work:

• AIX 5.3 using XL C/C++ v9.

• HP-UX 11i v3 using patched aC++ A.06.14.

• QNX Neutrino 6.3 using g++ 3.3 or later.

• Solaris using Sun Studio 11 or later.

• Tru64 v5.1 using Compaq C++ v7.1.

• Win32 using Borland C++ 5.9.2

Dependencies

The following libraries must be available in order to link programs that use Boost.Asio:

• Boost.System for the boost::system::error_code and boost::system::system_error classes.

• Boost.Regex (optional) if you use any of the read_until() or async_read_until() overloads that take a boost::regex
parameter.

• OpenSSL (optional) if you use Boost.Asio's SSL support.

Furthermore, some of the examples also require the Boost.Thread, Boost.Date_Time or Boost.Serialization libraries.

Note

With MSVC or Borland C++ you may want to add -DBOOST_DATE_TIME_NO_LIB and -DBOOST_REGEX_NO_LIB to
your project settings to disable autolinking of the Boost.Date_Time and Boost.Regex libraries respectively. Alternatively,
you may choose to build these libraries and link to them.

Building Boost Libraries

You may build the subset of Boost libraries required to use Boost.Asio and its examples by running the following command from
the root of the Boost download package:

bjam --with-system --with-thread --with-date_time --with-regex --with-serialization stage

This assumes that you have already built bjam. Consult the Boost.Build documentation for more details.

Macros

The macros listed in the table below may be used to control the behaviour of Boost.Asio.

30

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.openssl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Enables Boost.Asio's buffer debugging support, which can help
identify when invalid buffers are used in read or write operations

BOOST_ASIO_ENABLE_BUFFER_DEBUGGING

(e.g. if a std::string object being written is destroyed before the
write operation completes).

When using Microsoft Visual C++, this macro is defined auto-
matically if the compiler's iterator debugging support is enabled,
unless BOOST_ASIO_DISABLE_BUFFER_DEBUGGING has been
defined.

When using g++, this macro is defined automatically if standard
library debugging is enabled (_GLIBCXX_DEBUG is defined),
unless BOOST_ASIO_DISABLE_BUFFER_DEBUGGING has been
defined.

Explictly disables Boost.Asio's buffer debugging support.BOOST_ASIO_DISABLE_BUFFER_DEBUGGING

Explicitly disables /dev/poll support on Solaris, forcing the
use of a select-based implementation.

BOOST_ASIO_DISABLE_DEV_POLL

Explicitly disables epoll support on Linux, forcing the use of
a select-based implementation.

BOOST_ASIO_DISABLE_EPOLL

Explicitly disables eventfd support on Linux, forcing the use
of a pipe to interrupt blocked epoll/select system calls.

BOOST_ASIO_DISABLE_EVENTFD

Explicitly disables kqueue support on Mac OS X and BSD
variants, forcing the use of a select-based implementation.

BOOST_ASIO_DISABLE_KQUEUE

Explicitly disables I/O completion ports support on Windows,
forcing the use of a select-based implementation.

BOOST_ASIO_DISABLE_IOCP

By default, Boost.Asio will automatically define
WIN32_LEAN_AND_MEAN when compiling for Windows, to

BOOST_ASIO_NO_WIN32_LEAN_AND_MEAN

minimise the number of Windows SDK header files and features
t h a t a r e i n c l u d e d . T h e p r e s e n c e o f
BOOST_ASIO_NO_WIN32_LEAN_AND_MEAN prevents
WIN32_LEAN_AND_MEAN from being defined.

When compiling for Windows using Microsoft Visual C++ or
Borland C++, Boost.Asio will automatically link in the necessary

BOOST_ASIO_NO_DEFAULT_LINKED_LIBS

Windows SDK libraries for sockets support (i.e. ws2_32.lib
and mswsock.lib, or ws2.lib when building for Windows
CE). The BOOST_ASIO_NO_DEFAULT_LINKED_LIBS macro
prevents these libraries from being linked.

Determines the maximum number of arguments that may be
passed to the basic_socket_streambuf class template's
connect member function. Defaults to 5.

BOOST_ASIO_SOCKET_STREAMBUF_MAX_ARITY

Determines the maximum number of arguments that may be
passed to the basic_socket_iostream class template's con-
structor and connect member function. Defaults to 5.

BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY

31

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Enables use of the CancelIo function on older versions of
Windows. If not enabled, calls to cancel() on a socket object
will always fail with asio::error::operation_not_sup-
ported when run on Windows XP, Windows Server 2003, and
earlier versions of Windows. When running on Windows Vista,
Windows Server 2008, and later, the CancelIoEx function is
always used.

The CancelIo function has two issues that should be considered
before enabling its use:

* It will only cancel asynchronous operations that were initiated
in the current thread.

* It can appear to complete without error, but the request to
cancel the unfinished operations may be silently ignored by the
operating system. Whether it works or not seems to depend on
the drivers that are installed.

For portable cancellation, consider using one of the following
alternatives:

* Disable asio's I/O completion port backend by defining
BOOST_ASIO_DISABLE_IOCP.

* Use the socket object's close() function to simultaneously
cancel the outstanding operations and close the socket.

BOOST_ASIO_ENABLE_CANCELIO

Disables uses of the typeid operator in Boost.Asio. Defined
automatically if BOOST_NO_TYPEID is defined.

BOOST_ASIO_NO_TYPEID

Mailing List

A mailing list specifically for Boost.Asio may be found on SourceForge.net. Newsgroup access is provided via Gmane.

Wiki

Users are encouraged to share examples, tips and FAQs on the Boost.Asio wiki, which is located at http://asio.sourceforge.net.

Tutorial
Basic Skills

The tutorial programs in this first section introduce the fundamental concepts required to use the asio toolkit. Before plunging into
the complex world of network programming, these tutorial programs illustrate the basic skills using simple asynchronous timers.

• Timer.1 - Using a timer synchronously

• Timer.2 - Using a timer asynchronously

• Timer.3 - Binding arguments to a handler

• Timer.4 - Using a member function as a handler

• Timer.5 - Synchronising handlers in multithreaded programs

32

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://sourceforge.net/mail/?group_id=122478
http://dir.gmane.org/gmane.comp.lib.boost.asio.user
http://asio.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Introduction to Sockets

The tutorial programs in this section show how to use asio to develop simple client and server programs. These tutorial programs
are based around the daytime protocol, which supports both TCP and UDP.

The first three tutorial programs implement the daytime protocol using TCP.

• Daytime.1 - A synchronous TCP daytime client

• Daytime.2 - A synchronous TCP daytime server

• Daytime.3 - An asynchronous TCP daytime server

The next three tutorial programs implement the daytime protocol using UDP.

• Daytime.4 - A synchronous UDP daytime client

• Daytime.5 - A synchronous UDP daytime server

• Daytime.6 - An asynchronous UDP daytime server

The last tutorial program in this section demonstrates how asio allows the TCP and UDP servers to be easily combined into a single
program.

• Daytime.7 - A combined TCP/UDP asynchronous server

Timer.1 - Using a timer synchronously
This tutorial program introduces asio by showing how to perform a blocking wait on a timer.

We start by including the necessary header files.

All of the asio classes can be used by simply including the "asio.hpp" header file.

#include <iostream>
#include <boost/asio.hpp>

Since this example users timers, we need to include the appropriate Boost.Date_Time header file for manipulating times.

#include <boost/date_time/posix_time/posix_time.hpp>

All programs that use asio need to have at least one io_service object. This class provides access to I/O functionality. We declare an
object of this type first thing in the main function.

int main()
{
 boost::asio::io_service io;

Next we declare an object of type boost::asio::deadline_timer. The core asio classes that provide I/O functionality (or as in this case
timer functionality) always take a reference to an io_service as their first constructor argument. The second argument to the constructor
sets the timer to expire 5 seconds from now.

 boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));

In this simple example we perform a blocking wait on the timer. That is, the call to deadline_timer::wait() will not return until the
timer has expired, 5 seconds after it was created (i.e. not from when the wait starts).

33

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.ietf.org/rfc/rfc867.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A deadline timer is always in one of two states: "expired" or "not expired". If the deadline_timer::wait() function is called on an expired
timer, it will return immediately.

 t.wait();

Finally we print the obligatory "Hello, world!" message to show when the timer has expired.

 std::cout << "Hello, world!\n";

return 0;
}

See the full source listing

Return to the tutorial index

Next: Timer.2 - Using a timer asynchronously

Source listing for Timer.1

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

int main()
{
 boost::asio::io_service io;

 boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
 t.wait();

 std::cout << "Hello, world!\n";

return 0;
}

Return to Timer.1 - Using a timer synchronously

Timer.2 - Using a timer asynchronously
This tutorial program demonstrates how to use asio's asynchronous callback functionality by modifying the program from tutorial
Timer.1 to perform an asynchronous wait on the timer.

34

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

Using asio's asynchronous functionality means having a callback function that will be called when an asynchronous operation completes.
In this program we define a function called print to be called when the asynchronous wait finishes.

void print(const boost::system::error_code& /*e*/)
{
 std::cout << "Hello, world!\n";
}

int main()
{
 boost::asio::io_service io;

 boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));

Next, instead of doing a blocking wait as in tutorial Timer.1, we call the deadline_timer::async_wait() function to perform an asyn-
chronous wait. When calling this function we pass the print callback handler that was defined above.

 t.async_wait(print);

Finally, we must call the io_service::run() member function on the io_service object.

The asio library provides a guarantee that callback handlers will only be called from threads that are currently calling io_service::run().
Therefore unless the io_service::run() function is called the callback for the asynchronous wait completion will never be invoked.

The io_service::run() function will also continue to run while there is still "work" to do. In this example, the work is the asynchronous
wait on the timer, so the call will not return until the timer has expired and the callback has completed.

It is important to remember to give the io_service some work to do before calling io_service::run(). For example, if we had omitted
the above call to deadline_timer::async_wait(), the io_service would not have had any work to do, and consequently io_service::run()
would have returned immediately.

 io.run();

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.1 - Using a timer synchronously

Next: Timer.3 - Binding arguments to a handler

35

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Timer.2

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

void print(const boost::system::error_code& /*e*/)
{
 std::cout << "Hello, world!\n";
}

int main()
{
 boost::asio::io_service io;

 boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
 t.async_wait(print);

 io.run();

return 0;
}

Return to Timer.2 - Using a timer asynchronously

Timer.3 - Binding arguments to a handler
In this tutorial we will modify the program from tutorial Timer.2 so that the timer fires once a second. This will show how to pass
additional parameters to your handler function.

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

To implement a repeating timer using asio you need to change the timer's expiry time in your callback function, and to then start a
new asynchronous wait. Obviously this means that the callback function will need to be able to access the timer object. To this end
we add two new parameters to the print function:

• A pointer to a timer object.

• A counter so that we can stop the program when the timer fires for the sixth time.

void print(const boost::system::error_code& /*e*/,
 boost::asio::deadline_timer* t, int* count)
{

As mentioned above, this tutorial program uses a counter to stop running when the timer fires for the sixth time. However you will
observe that there is no explicit call to ask the io_service to stop. Recall that in tutorial Timer.2 we learnt that the io_service::run()

36

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

function completes when there is no more "work" to do. By not starting a new asynchronous wait on the timer when count reaches
5, the io_service will run out of work and stop running.

if (*count < 5)
{

 std::cout << *count << "\n";
++(*count);

Next we move the expiry time for the timer along by one second from the previous expiry time. By calculating the new expiry time
relative to the old, we can ensure that the timer does not drift away from the whole-second mark due to any delays in processing the
handler.

 t->expires_at(t->expires_at() + boost::posix_time::seconds(1));

Then we start a new asynchronous wait on the timer. As you can see, the boost::bind() function is used to associate the extra para-
meters with your callback handler. The deadline_timer::async_wait() function expects a handler function (or function object) with
the signature void(const boost::system::error_code&). Binding the additional parameters converts your print function
into a function object that matches the signature correctly.

See the Boost.Bind documentation for more information on how to use boost::bind().

In this example, the boost::asio::placeholders::error argument to boost::bind() is a named placeholder for the error object passed to
the handler. When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match
the handler's parameter list. In tutorial Timer.4 you will see that this placeholder may be elided if the parameter is not needed by the
callback handler.

 t->async_wait(boost::bind(print,
 boost::asio::placeholders::error, t, count));
}

}

int main()
{
 boost::asio::io_service io;

A new count variable is added so that we can stop the program when the timer fires for the sixth time.

int count = 0;
 boost::asio::deadline_timer t(io, boost::posix_time::seconds(1));

As in Step 4, when making the call to deadline_timer::async_wait() from main we bind the additional parameters needed for the
print function.

 t.async_wait(boost::bind(print,
 boost::asio::placeholders::error, &t, &count));

 io.run();

Finally, just to prove that the count variable was being used in the print handler function, we will print out its new value.

 std::cout << "Final count is " << count << "\n";

return 0;
}

See the full source listing

37

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/bind/bind.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return to the tutorial index

Previous: Timer.2 - Using a timer asynchronously

Next: Timer.4 - Using a member function as a handler

Source listing for Timer.3

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

void print(const boost::system::error_code& /*e*/,
 boost::asio::deadline_timer* t, int* count)
{
if (*count < 5)
{

 std::cout << *count << "\n";
++(*count);

 t->expires_at(t->expires_at() + boost::posix_time::seconds(1));
 t->async_wait(boost::bind(print,
 boost::asio::placeholders::error, t, count));
}

}

int main()
{
 boost::asio::io_service io;

int count = 0;
 boost::asio::deadline_timer t(io, boost::posix_time::seconds(1));
 t.async_wait(boost::bind(print,
 boost::asio::placeholders::error, &t, &count));

 io.run();

 std::cout << "Final count is " << count << "\n";

return 0;
}

Return to Timer.3 - Binding arguments to a handler

Timer.4 - Using a member function as a handler
In this tutorial we will see how to use a class member function as a callback handler. The program should execute identically to the
tutorial program from tutorial Timer.3.

38

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

Instead of defining a free function print as the callback handler, as we did in the earlier tutorial programs, we now define a class
called printer.

class printer
{
public:

The constructor of this class will take a reference to the io_service object and use it when initialising the timer_ member. The
counter used to shut down the program is now also a member of the class.

 printer(boost::asio::io_service& io)
: timer_(io, boost::posix_time::seconds(1)),

 count_(0)
{

The boost::bind() function works just as well with class member functions as with free functions. Since all non-static class member
functions have an implicit this parameter, we need to bind this to the function. As in tutorial Timer.3, boost::bind() converts our
callback handler (now a member function) into a function object that can be invoked as though it has the signature void(const
boost::system::error_code&).

You will note that the boost::asio::placeholders::error placeholder is not specified here, as the print member function does not accept
an error object as a parameter.

 timer_.async_wait(boost::bind(&printer::print, this));
}

In the class destructor we will print out the final value of the counter.

~printer()
{

 std::cout << "Final count is " << count_ << "\n";
}

The print member function is very similar to the print function from tutorial Timer.3, except that it now operates on the class
data members instead of having the timer and counter passed in as parameters.

39

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void print()
{
if (count_ < 5)
{

 std::cout << count_ << "\n";
++count_;

 timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
 timer_.async_wait(boost::bind(&printer::print, this));

}
}

private:
 boost::asio::deadline_timer timer_;
int count_;

};

The main function is much simpler than before, as it now declares a local printer object before running the io_service as normal.

int main()
{
 boost::asio::io_service io;
 printer p(io);
 io.run();

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.3 - Binding arguments to a handler

Next: Timer.5 - Synchronising handlers in multithreaded programs

40

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Timer.4

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

class printer
{
public:
 printer(boost::asio::io_service& io)

: timer_(io, boost::posix_time::seconds(1)),
 count_(0)
{

 timer_.async_wait(boost::bind(&printer::print, this));
}

~printer()
{

 std::cout << "Final count is " << count_ << "\n";
}

void print()
{
if (count_ < 5)
{

 std::cout << count_ << "\n";
++count_;

 timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
 timer_.async_wait(boost::bind(&printer::print, this));

}
}

private:
 boost::asio::deadline_timer timer_;
int count_;

};

int main()
{
 boost::asio::io_service io;
 printer p(io);
 io.run();

return 0;
}

Return to Timer.4 - Using a member function as a handler

41

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Timer.5 - Synchronising handlers in multithreaded programs
This tutorial demonstrates the use of the boost::asio::strand class to synchronise callback handlers in a multithreaded program.

The previous four tutorials avoided the issue of handler synchronisation by calling the io_service::run() function from one thread
only. As you already know, the asio library provides a guarantee that callback handlers will only be called from threads that are
currently calling io_service::run(). Consequently, calling io_service::run() from only one thread ensures that callback handlers cannot
run concurrently.

The single threaded approach is usually the best place to start when developing applications using asio. The downside is the limitations
it places on programs, particularly servers, including:

• Poor responsiveness when handlers can take a long time to complete.

• An inability to scale on multiprocessor systems.

If you find yourself running into these limitations, an alternative approach is to have a pool of threads calling io_service::run().
However, as this allows handlers to execute concurrently, we need a method of synchronisation when handlers might be accessing
a shared, thread-unsafe resource.

#include <iostream>
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

We start by defining a class called printer, similar to the class in the previous tutorial. This class will extend the previous tutorial
by running two timers in parallel.

class printer
{
public:

In addition to initialising a pair of boost::asio::deadline_timer members, the constructor initialises the strand_ member, an object
of type boost::asio::strand.

An boost::asio::strand guarantees that, for those handlers that are dispatched through it, an executing handler will be allowed to
complete before the next one is started. This is guaranteed irrespective of the number of threads that are calling io_service::run().
Of course, the handlers may still execute concurrently with other handlers that were not dispatched through an boost::asio::strand,
or were dispatched through a different boost::asio::strand object.

 printer(boost::asio::io_service& io)
: strand_(io),

 timer1_(io, boost::posix_time::seconds(1)),
 timer2_(io, boost::posix_time::seconds(1)),
 count_(0)
{

When initiating the asynchronous operations, each callback handler is "wrapped" using the boost::asio::strand object. The strand::wrap()
function returns a new handler that automatically dispatches its contained handler through the boost::asio::strand object. By wrapping
the handlers using the same boost::asio::strand, we are ensuring that they cannot execute concurrently.

42

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
 timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
}

~printer()
{

 std::cout << "Final count is " << count_ << "\n";
}

In a multithreaded program, the handlers for asynchronous operations should be synchronised if they access shared resources. In
this tutorial, the shared resources used by the handlers (print1 and print2) are std::cout and the count_ data member.

void print1()
{
if (count_ < 10)
{

 std::cout << "Timer 1: " << count_ << "\n";
++count_;

 timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));
 timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));

}
}

void print2()
{
if (count_ < 10)
{

 std::cout << "Timer 2: " << count_ << "\n";
++count_;

 timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
 timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));

}
}

private:
 boost::asio::strand strand_;
 boost::asio::deadline_timer timer1_;
 boost::asio::deadline_timer timer2_;
int count_;

};

The main function now causes io_service::run() to be called from two threads: the main thread and one additional thread. This is
accomplished using an boost::thread object.

Just as it would with a call from a single thread, concurrent calls to io_service::run() will continue to execute while there is "work"
left to do. The background thread will not exit until all asynchronous operations have completed.

43

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main()
{
 boost::asio::io_service io;
 printer p(io);
 boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
 io.run();
 t.join();

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.4 - Using a member function as a handler

Source listing for Timer.5

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

class printer
{
public:
 printer(boost::asio::io_service& io)

: strand_(io),
 timer1_(io, boost::posix_time::seconds(1)),
 timer2_(io, boost::posix_time::seconds(1)),
 count_(0)
{

 timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
 timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
}

~printer()
{

 std::cout << "Final count is " << count_ << "\n";
}

void print1()
{
if (count_ < 10)
{

 std::cout << "Timer 1: " << count_ << "\n";
++count_;

 timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));

44

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
}

}

void print2()
{
if (count_ < 10)
{

 std::cout << "Timer 2: " << count_ << "\n";
++count_;

 timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
 timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));

}
}

private:
 boost::asio::strand strand_;
 boost::asio::deadline_timer timer1_;
 boost::asio::deadline_timer timer2_;
int count_;

};

int main()
{
 boost::asio::io_service io;
 printer p(io);
 boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
 io.run();
 t.join();

return 0;
}

Return to Timer.5 - Synchronising handlers in multithreaded programs

Daytime.1 - A synchronous TCP daytime client
This tutorial program shows how to use asio to implement a client application with TCP.

We start by including the necessary header files.

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

The purpose of this application is to access a daytime service, so we need the user to specify the server.

45

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::asio::ip::tcp;

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{

 std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

All programs that use asio need to have at least one io_service object.

 boost::asio::io_service io_service;

We need to turn the server name that was specified as a parameter to the application, into a TCP endpoint. To do this we use an
ip::tcp::resolver object.

 tcp::resolver resolver(io_service);

A resolver takes a query object and turns it into a list of endpoints. We construct a query using the name of the server, specified in
argv[1], and the name of the service, in this case "daytime".

 tcp::resolver::query query(argv[1], "daytime");

The list of endpoints is returned using an iterator of type ip::tcp::resolver::iterator. A default constructed ip::tcp::resolver::iterator
object is used as the end iterator.

 tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
 tcp::resolver::iterator end;

Now we create and connect the socket. The list of endpoints obtained above may contain both IPv4 and IPv6 endpoints, so we need
to try each of them until we find one that works. This keeps the client program independent of a specific IP version.

 tcp::socket socket(io_service);
 boost::system::error_code error = boost::asio::error::host_not_found;

while (error && endpoint_iterator != end)
{

 socket.close();
 socket.connect(*endpoint_iterator++, error);

}
if (error)

throw boost::system::system_error(error);

The connection is open. All we need to do now is read the response from the daytime service.

We use a boost::array to hold the received data. The boost::asio::buffer() function automatically determines the size of the array
to help prevent buffer overruns. Instead of a boost::array, we could have used a char [] or std::vector.

46

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

for (;;)
{

 boost::array<char, 128> buf;
 boost::system::error_code error;

 size_t len = socket.read_some(boost::asio::buffer(buf), error);

When the server closes the connection, the ip::tcp::socket::read_some() function will exit with the boost::asio::error::eof error, which
is how we know to exit the loop.

if (error == boost::asio::error::eof)
break; // Connection closed cleanly by peer.

else if (error)
throw boost::system::system_error(error); // Some other error.

 std::cout.write(buf.data(), len);
}

Finally, handle any exceptions that may have been thrown.

}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

See the full source listing

Return to the tutorial index

Next: Daytime.2 - A synchronous TCP daytime server

47

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.1

//
// client.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{

 std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

 boost::asio::io_service io_service;

 tcp::resolver resolver(io_service);
 tcp::resolver::query query(argv[1], "daytime");
 tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
 tcp::resolver::iterator end;

 tcp::socket socket(io_service);
 boost::system::error_code error = boost::asio::error::host_not_found;

while (error && endpoint_iterator != end)
{

 socket.close();
 socket.connect(*endpoint_iterator++, error);

}
if (error)

throw boost::system::system_error(error);

for (;;)
{

 boost::array<char, 128> buf;
 boost::system::error_code error;

 size_t len = socket.read_some(boost::asio::buffer(buf), error);

if (error == boost::asio::error::eof)
break; // Connection closed cleanly by peer.

else if (error)
throw boost::system::system_error(error); // Some other error.

 std::cout.write(buf.data(), len);
}

}
catch (std::exception& e)

48

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

{
 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.1 - A synchronous TCP daytime client

Daytime.2 - A synchronous TCP daytime server
This tutorial program shows how to use asio to implement a server application with TCP.

#include <ctime>
#include <iostream>
#include <string>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

We define the function make_daytime_string() to create the string to be sent back to the client. This function will be reused in
all of our daytime server applications.

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;

 time_t now = time(0);
return ctime(&now);

}

int main()
{
try
{

 boost::asio::io_service io_service;

A ip::tcp::acceptor object needs to be created to listen for new connections. It is initialised to listen on TCP port 13, for IP version
4.

 tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));

This is an iterative server, which means that it will handle one connection at a time. Create a socket that will represent the connection
to the client, and then wait for a connection.

for (;;)
{

 tcp::socket socket(io_service);
 acceptor.accept(socket);

A client is accessing our service. Determine the current time and transfer this information to the client.

49

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 std::string message = make_daytime_string();

 boost::system::error_code ignored_error;
 boost::asio::write(socket, boost::asio::buffer(message),
 boost::asio::transfer_all(), ignored_error);

}
}

Finally, handle any exceptions.

catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Daytime.1 - A synchronous TCP daytime client

Next: Daytime.3 - An asynchronous TCP daytime server

50

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.2

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;

 time_t now = time(0);
return ctime(&now);

}

int main()
{
try
{

 boost::asio::io_service io_service;

 tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));

for (;;)
{

 tcp::socket socket(io_service);
 acceptor.accept(socket);

 std::string message = make_daytime_string();

 boost::system::error_code ignored_error;
 boost::asio::write(socket, boost::asio::buffer(message),
 boost::asio::transfer_all(), ignored_error);

}
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.2 - A synchronous TCP daytime server

51

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Daytime.3 - An asynchronous TCP daytime server

The main() function

int main()
{
try
{

We need to create a server object to accept incoming client connections. The io_service object provides I/O services, such as sockets,
that the server object will use.

 boost::asio::io_service io_service;
 tcp_server server(io_service);

Run the io_service object so that it will perform asynchronous operations on your behalf.

 io_service.run();
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

The tcp_server class

class tcp_server
{
public:

The constructor initialises an acceptor to listen on TCP port 13.

 tcp_server(boost::asio::io_service& io_service)
: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))

{
 start_accept();
}

private:

The function start_accept() creates a socket and initiates an asynchronous accept operation to wait for a new connection.

52

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void start_accept()
{

 tcp_connection::pointer new_connection =
 tcp_connection::create(acceptor_.io_service());

 acceptor_.async_accept(new_connection->socket(),
 boost::bind(&tcp_server::handle_accept, this, new_connection,
 boost::asio::placeholders::error));
}

The function handle_accept() is called when the asynchronous accept operation initiated by start_accept() finishes. It services
the client request, and then calls start_accept() to initiate the next accept operation.

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{

 new_connection->start();
 start_accept();

}
}

The tcp_connection class

We will use shared_ptr and enable_shared_from_this because we want to keep the tcp_connection object alive as long
as there is an operation that refers to it.

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

 tcp::socket& socket()
{
return socket_;

}

In the function start(), we call boost::asio::async_write() to serve the data to the client. Note that we are using
boost::asio::async_write(), rather than ip::tcp::socket::async_write_some(), to ensure that the entire block of data is sent.

void start()
{

The data to be sent is stored in the class member message_ as we need to keep the data valid until the asynchronous operation is
complete.

 message_ = make_daytime_string();

When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match the handler's
parameter list. In this program, both of the argument placeholders (boost::asio::placeholders::error and boost::asio::placehold-
ers::bytes_transferred) could potentially have been removed, since they are not being used in handle_write().

53

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 boost::asio::async_write(socket_, boost::asio::buffer(message_),
 boost::bind(&tcp_connection::handle_write, shared_from_this(),
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));

Any further actions for this client connection are now the responsibility of handle_write().

}

private:
 tcp_connection(boost::asio::io_service& io_service)

: socket_(io_service)
{
}

void handle_write(const boost::system::error_code& /*error*/,
 size_t /*bytes_transferred*/)
{
}

 tcp::socket socket_;
 std::string message_;
};

Removing unused handler parameters

You may have noticed that the error, and bytes_transferred parameters are not used in the body of the handle_write()
function. If parameters are not needed, it is possible to remove them from the function so that it looks like:

void handle_write()
{
}

The boost::asio::async_write() call used to initiate the call can then be changed to just:

 boost::asio::async_write(socket_, boost::asio::buffer(message_),
 boost::bind(&tcp_connection::handle_write, shared_from_this()));

See the full source listing

Return to the tutorial index

Previous: Daytime.2 - A synchronous TCP daytime server

Next: Daytime.4 - A synchronous UDP daytime client

54

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.3

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;

 time_t now = time(0);
return ctime(&now);

}

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

 tcp::socket& socket()
{
return socket_;

}

void start()
{

 message_ = make_daytime_string();

 boost::asio::async_write(socket_, boost::asio::buffer(message_),
 boost::bind(&tcp_connection::handle_write, shared_from_this(),
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
}

private:
 tcp_connection(boost::asio::io_service& io_service)

: socket_(io_service)
{
}

void handle_write(const boost::system::error_code& /*error*/,
 size_t /*bytes_transferred*/)

55

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

{
}

 tcp::socket socket_;
 std::string message_;
};

class tcp_server
{
public:
 tcp_server(boost::asio::io_service& io_service)

: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))
{

 start_accept();
}

private:
void start_accept()
{

 tcp_connection::pointer new_connection =
 tcp_connection::create(acceptor_.io_service());

 acceptor_.async_accept(new_connection->socket(),
 boost::bind(&tcp_server::handle_accept, this, new_connection,
 boost::asio::placeholders::error));
}

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{

 new_connection->start();
 start_accept();

}
}

 tcp::acceptor acceptor_;
};

int main()
{
try
{

 boost::asio::io_service io_service;
 tcp_server server(io_service);
 io_service.run();
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.3 - An asynchronous TCP daytime server

Daytime.4 - A synchronous UDP daytime client
This tutorial program shows how to use asio to implement a client application with UDP.

56

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

The start of the application is essentially the same as for the TCP daytime client.

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{

 std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

 boost::asio::io_service io_service;

We use an ip::udp::resolver object to find the correct remote endpoint to use based on the host and service names. The query is re-
stricted to return only IPv4 endpoints by the ip::udp::v4() argument.

 udp::resolver resolver(io_service);
 udp::resolver::query query(udp::v4(), argv[1], "daytime");

The ip::udp::resolver::resolve() function is guaranteed to return at least one endpoint in the list if it does not fail. This means it is
safe to dereference the return value directly.

 udp::endpoint receiver_endpoint = *resolver.resolve(query);

Since UDP is datagram-oriented, we will not be using a stream socket. Create an ip::udp::socket and initiate contact with the remote
endpoint.

 udp::socket socket(io_service);
 socket.open(udp::v4());

 boost::array<char, 1> send_buf = { 0 };
 socket.send_to(boost::asio::buffer(send_buf), receiver_endpoint);

Now we need to be ready to accept whatever the server sends back to us. The endpoint on our side that receives the server's response
will be initialised by ip::udp::socket::receive_from().

 boost::array<char, 128> recv_buf;
 udp::endpoint sender_endpoint;
 size_t len = socket.receive_from(
 boost::asio::buffer(recv_buf), sender_endpoint);

 std::cout.write(recv_buf.data(), len);
}

Finally, handle any exceptions that may have been thrown.

57

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Daytime.3 - An asynchronous TCP daytime server

Next: Daytime.5 - A synchronous UDP daytime server

Source listing for Daytime.4

//
// client.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{

 std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

 boost::asio::io_service io_service;

 udp::resolver resolver(io_service);
 udp::resolver::query query(udp::v4(), argv[1], "daytime");
 udp::endpoint receiver_endpoint = *resolver.resolve(query);

 udp::socket socket(io_service);
 socket.open(udp::v4());

 boost::array<char, 1> send_buf = { 0 };
 socket.send_to(boost::asio::buffer(send_buf), receiver_endpoint);

 boost::array<char, 128> recv_buf;
 udp::endpoint sender_endpoint;
 size_t len = socket.receive_from(
 boost::asio::buffer(recv_buf), sender_endpoint);

58

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 std::cout.write(recv_buf.data(), len);
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.4 - A synchronous UDP daytime client

Daytime.5 - A synchronous UDP daytime server
This tutorial program shows how to use asio to implement a server application with UDP.

int main()
{
try
{

 boost::asio::io_service io_service;

Create an ip::udp::socket object to receive requests on UDP port 13.

 udp::socket socket(io_service, udp::endpoint(udp::v4(), 13));

Wait for a client to initiate contact with us. The remote_endpoint object will be populated by ip::udp::socket::receive_from().

for (;;)
{

 boost::array<char, 1> recv_buf;
 udp::endpoint remote_endpoint;
 boost::system::error_code error;
 socket.receive_from(boost::asio::buffer(recv_buf),
 remote_endpoint, 0, error);

if (error && error != boost::asio::error::message_size)
throw boost::system::system_error(error);

Determine what we are going to send back to the client.

 std::string message = make_daytime_string();

Send the response to the remote_endpoint.

 boost::system::error_code ignored_error;
 socket.send_to(boost::asio::buffer(message),
 remote_endpoint, 0, ignored_error);

}
}

Finally, handle any exceptions.

59

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Daytime.4 - A synchronous UDP daytime client

Next: Daytime.6 - An asynchronous UDP daytime server

Source listing for Daytime.5

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;

 time_t now = time(0);
return ctime(&now);

}

int main()
{
try
{

 boost::asio::io_service io_service;

 udp::socket socket(io_service, udp::endpoint(udp::v4(), 13));

for (;;)
{

 boost::array<char, 1> recv_buf;
 udp::endpoint remote_endpoint;
 boost::system::error_code error;
 socket.receive_from(boost::asio::buffer(recv_buf),
 remote_endpoint, 0, error);

if (error && error != boost::asio::error::message_size)
throw boost::system::system_error(error);

60

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 std::string message = make_daytime_string();

 boost::system::error_code ignored_error;
 socket.send_to(boost::asio::buffer(message),
 remote_endpoint, 0, ignored_error);

}
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.5 - A synchronous UDP daytime server

Daytime.6 - An asynchronous UDP daytime server

The main() function

int main()
{
try
{

Create a server object to accept incoming client requests, and run the io_service object.

 boost::asio::io_service io_service;
 udp_server server(io_service);
 io_service.run();
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

The udp_server class

class udp_server
{
public:

The constructor initialises a socket to listen on UDP port 13.

61

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 udp_server(boost::asio::io_service& io_service)
: socket_(io_service, udp::endpoint(udp::v4(), 13))

{
 start_receive();
}

private:
void start_receive()
{

The function ip::udp::socket::async_receive_from() will cause the application to listen in the background for a new request. When
such a request is received, the io_service object will invoke the handle_receive() function with two arguments: a value of type
boost::system::error_code indicating whether the operation succeeded or failed, and a size_t value bytes_transferred specifying
the number of bytes received.

 socket_.async_receive_from(
 boost::asio::buffer(recv_buffer_), remote_endpoint_,
 boost::bind(&udp_server::handle_receive, this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
}

The function handle_receive() will service the client request.

void handle_receive(const boost::system::error_code& error,
 std::size_t /*bytes_transferred*/)
{

The error parameter contains the result of the asynchronous operation. Since we only provide the 1-byte recv_buffer_ to contain
the client's request, the io_service object would return an error if the client sent anything larger. We can ignore such an error if it
comes up.

if (!error || error == boost::asio::error::message_size)
{

Determine what we are going to send.

 boost::shared_ptr<std::string> message(
new std::string(make_daytime_string()));

We now call ip::udp::socket::async_send_to() to serve the data to the client.

 socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
 boost::bind(&udp_server::handle_send, this, message,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));

When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match the handler's
parameter list. In this program, both of the argument placeholders (boost::asio::placeholders::error and boost::asio::placehold-
ers::bytes_transferred) could potentially have been removed.

Start listening for the next client request.

 start_receive();

Any further actions for this client request are now the responsibility of handle_send().

62

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}
}

The function handle_send() is invoked after the service request has been completed.

void handle_send(boost::shared_ptr<std::string> /*message*/,
const boost::system::error_code& /*error*/,

 std::size_t /*bytes_transferred*/)
{
}

 udp::socket socket_;
 udp::endpoint remote_endpoint_;
 boost::array<char, 1> recv_buffer_;
};

See the full source listing

Return to the tutorial index

Previous: Daytime.5 - A synchronous UDP daytime server

Next: Daytime.7 - A combined TCP/UDP asynchronous server

63

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.6

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/array.hpp>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;

 time_t now = time(0);
return ctime(&now);

}

class udp_server
{
public:
 udp_server(boost::asio::io_service& io_service)

: socket_(io_service, udp::endpoint(udp::v4(), 13))
{

 start_receive();
}

private:
void start_receive()
{

 socket_.async_receive_from(
 boost::asio::buffer(recv_buffer_), remote_endpoint_,
 boost::bind(&udp_server::handle_receive, this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
}

void handle_receive(const boost::system::error_code& error,
 std::size_t /*bytes_transferred*/)
{
if (!error || error == boost::asio::error::message_size)
{

 boost::shared_ptr<std::string> message(
new std::string(make_daytime_string()));

 socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
 boost::bind(&udp_server::handle_send, this, message,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));

 start_receive();
}

64

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}

void handle_send(boost::shared_ptr<std::string> /*message*/,
const boost::system::error_code& /*error*/,

 std::size_t /*bytes_transferred*/)
{
}

 udp::socket socket_;
 udp::endpoint remote_endpoint_;
 boost::array<char, 1> recv_buffer_;
};

int main()
{
try
{

 boost::asio::io_service io_service;
 udp_server server(io_service);
 io_service.run();
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.6 - An asynchronous UDP daytime server

Daytime.7 - A combined TCP/UDP asynchronous server
This tutorial program shows how to combine the two asynchronous servers that we have just written, into a single server application.

The main() function

int main()
{
try
{

 boost::asio::io_service io_service;

We will begin by creating a server object to accept a TCP client connection.

 tcp_server server1(io_service);

We also need a server object to accept a UDP client request.

 udp_server server2(io_service);

We have created two lots of work for the io_service object to do.

65

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 io_service.run();
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

The tcp_connection and tcp_server classes

The following two classes are taken from Daytime.3 .

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

 tcp::socket& socket()
{
return socket_;

}

void start()
{

 message_ = make_daytime_string();

 boost::asio::async_write(socket_, boost::asio::buffer(message_),
 boost::bind(&tcp_connection::handle_write, shared_from_this()));
}

private:
 tcp_connection(boost::asio::io_service& io_service)

: socket_(io_service)
{
}

void handle_write()
{
}

 tcp::socket socket_;
 std::string message_;
};

class tcp_server
{
public:
 tcp_server(boost::asio::io_service& io_service)

: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))
{

 start_accept();
}

private:

66

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void start_accept()
{

 tcp_connection::pointer new_connection =
 tcp_connection::create(acceptor_.io_service());

 acceptor_.async_accept(new_connection->socket(),
 boost::bind(&tcp_server::handle_accept, this, new_connection,
 boost::asio::placeholders::error));
}

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{

 new_connection->start();
 start_accept();

}
}

 tcp::acceptor acceptor_;
};

The udp_server class

Similarly, this next class is taken from the previous tutorial step .

67

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class udp_server
{
public:
 udp_server(boost::asio::io_service& io_service)

: socket_(io_service, udp::endpoint(udp::v4(), 13))
{

 start_receive();
}

private:
void start_receive()
{

 socket_.async_receive_from(
 boost::asio::buffer(recv_buffer_), remote_endpoint_,
 boost::bind(&udp_server::handle_receive, this,
 boost::asio::placeholders::error));
}

void handle_receive(const boost::system::error_code& error)
{
if (!error || error == boost::asio::error::message_size)
{

 boost::shared_ptr<std::string> message(
new std::string(make_daytime_string()));

 socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
 boost::bind(&udp_server::handle_send, this, message));

 start_receive();
}

}

void handle_send(boost::shared_ptr<std::string> /*message*/)
{
}

 udp::socket socket_;
 udp::endpoint remote_endpoint_;
 boost::array<char, 1> recv_buffer_;
};

See the full source listing

Return to the tutorial index

Previous: Daytime.6 - An asynchronous UDP daytime server

68

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.7

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/array.hpp>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;
using boost::asio::ip::udp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;

 time_t now = time(0);
return ctime(&now);

}

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

 tcp::socket& socket()
{
return socket_;

}

void start()
{

 message_ = make_daytime_string();

 boost::asio::async_write(socket_, boost::asio::buffer(message_),
 boost::bind(&tcp_connection::handle_write, shared_from_this()));
}

private:
 tcp_connection(boost::asio::io_service& io_service)

: socket_(io_service)
{
}

void handle_write()
{

69

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}

 tcp::socket socket_;
 std::string message_;
};

class tcp_server
{
public:
 tcp_server(boost::asio::io_service& io_service)

: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))
{

 start_accept();
}

private:
void start_accept()
{

 tcp_connection::pointer new_connection =
 tcp_connection::create(acceptor_.io_service());

 acceptor_.async_accept(new_connection->socket(),
 boost::bind(&tcp_server::handle_accept, this, new_connection,
 boost::asio::placeholders::error));
}

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{

 new_connection->start();
 start_accept();

}
}

 tcp::acceptor acceptor_;
};

class udp_server
{
public:
 udp_server(boost::asio::io_service& io_service)

: socket_(io_service, udp::endpoint(udp::v4(), 13))
{

 start_receive();
}

private:
void start_receive()
{

 socket_.async_receive_from(
 boost::asio::buffer(recv_buffer_), remote_endpoint_,
 boost::bind(&udp_server::handle_receive, this,
 boost::asio::placeholders::error));
}

void handle_receive(const boost::system::error_code& error)
{
if (!error || error == boost::asio::error::message_size)
{

 boost::shared_ptr<std::string> message(
new std::string(make_daytime_string()));

70

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
 boost::bind(&udp_server::handle_send, this, message));

 start_receive();
}

}

void handle_send(boost::shared_ptr<std::string> /*message*/)
{
}

 udp::socket socket_;
 udp::endpoint remote_endpoint_;
 boost::array<char, 1> recv_buffer_;
};

int main()
{
try
{

 boost::asio::io_service io_service;
 tcp_server server1(io_service);
 udp_server server2(io_service);
 io_service.run();
}
catch (std::exception& e)
{

 std::cerr << e.what() << std::endl;
}

return 0;
}

Return to Daytime.7 - A combined TCP/UDP asynchronous server

Examples
Allocation

This example shows how to customise the allocation of memory associated with asynchronous operations.

• boost_asio/example/allocation/server.cpp

Buffers

This example demonstrates how to create reference counted buffers that can be used with socket read and write operations.

• boost_asio/example/buffers/reference_counted.cpp

Chat

This example implements a chat server and client. The programs use a custom protocol with a fixed length message header and
variable length message body.

• boost_asio/example/chat/chat_message.hpp

• boost_asio/example/chat/chat_client.cpp

• boost_asio/example/chat/chat_server.cpp

71

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/allocation/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/buffers/reference_counted.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/chat/chat_message.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/chat/chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/chat/chat_server.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The following POSIX-specific chat client demonstrates how to use the posix::stream_descriptor class to perform console input and
output.

• boost_asio/example/chat/posix_chat_client.cpp

Echo

A collection of simple clients and servers, showing the use of both synchronous and asynchronous operations.

• boost_asio/example/echo/async_tcp_echo_server.cpp

• boost_asio/example/echo/async_udp_echo_server.cpp

• boost_asio/example/echo/blocking_tcp_echo_client.cpp

• boost_asio/example/echo/blocking_tcp_echo_server.cpp

• boost_asio/example/echo/blocking_udp_echo_client.cpp

• boost_asio/example/echo/blocking_udp_echo_server.cpp

HTTP Client

Example programs implementing simple HTTP 1.0 clients. These examples show how to use the read_until and async_read_until
functions.

• boost_asio/example/http/client/sync_client.cpp

• boost_asio/example/http/client/async_client.cpp

HTTP Server

This example illustrates the use of asio in a simple single-threaded server implementation of HTTP 1.0. It demonstrates how to perform
a clean shutdown by cancelling all outstanding asynchronous operations.

• boost_asio/example/http/server/connection.cpp

• boost_asio/example/http/server/connection.hpp

• boost_asio/example/http/server/connection_manager.cpp

• boost_asio/example/http/server/connection_manager.hpp

• boost_asio/example/http/server/header.hpp

• boost_asio/example/http/server/mime_types.cpp

• boost_asio/example/http/server/mime_types.hpp

• boost_asio/example/http/server/posix_main.cpp

• boost_asio/example/http/server/reply.cpp

• boost_asio/example/http/server/reply.hpp

• boost_asio/example/http/server/request.hpp

• boost_asio/example/http/server/request_handler.cpp

• boost_asio/example/http/server/request_handler.hpp

72

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/chat/posix_chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/echo/async_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/echo/async_udp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/echo/blocking_tcp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/echo/blocking_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/echo/blocking_udp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/echo/blocking_udp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/client/sync_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/client/async_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/connection_manager.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/connection_manager.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/posix_main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/request_handler.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/http/server/request_parser.cpp

• boost_asio/example/http/server/request_parser.hpp

• boost_asio/example/http/server/server.cpp

• boost_asio/example/http/server/server.hpp

• boost_asio/example/http/server/win_main.cpp

HTTP Server 2

An HTTP server using an io_service-per-CPU design.

• boost_asio/example/http/server2/connection.cpp

• boost_asio/example/http/server2/connection.hpp

• boost_asio/example/http/server2/header.hpp

• boost_asio/example/http/server2/io_service_pool.cpp

• boost_asio/example/http/server2/io_service_pool.hpp

• boost_asio/example/http/server2/mime_types.cpp

• boost_asio/example/http/server2/mime_types.hpp

• boost_asio/example/http/server2/posix_main.cpp

• boost_asio/example/http/server2/reply.cpp

• boost_asio/example/http/server2/reply.hpp

• boost_asio/example/http/server2/request.hpp

• boost_asio/example/http/server2/request_handler.cpp

• boost_asio/example/http/server2/request_handler.hpp

• boost_asio/example/http/server2/request_parser.cpp

• boost_asio/example/http/server2/request_parser.hpp

• boost_asio/example/http/server2/server.cpp

• boost_asio/example/http/server2/server.hpp

• boost_asio/example/http/server2/win_main.cpp

HTTP Server 3

An HTTP server using a single io_service and a thread pool calling io_service::run().

• boost_asio/example/http/server3/connection.cpp

• boost_asio/example/http/server3/connection.hpp

• boost_asio/example/http/server3/header.hpp

• boost_asio/example/http/server3/mime_types.cpp

73

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server/win_main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/io_service_pool.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/io_service_pool.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/posix_main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server2/win_main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/mime_types.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/http/server3/mime_types.hpp

• boost_asio/example/http/server3/posix_main.cpp

• boost_asio/example/http/server3/reply.cpp

• boost_asio/example/http/server3/reply.hpp

• boost_asio/example/http/server3/request.hpp

• boost_asio/example/http/server3/request_handler.cpp

• boost_asio/example/http/server3/request_handler.hpp

• boost_asio/example/http/server3/request_parser.cpp

• boost_asio/example/http/server3/request_parser.hpp

• boost_asio/example/http/server3/server.cpp

• boost_asio/example/http/server3/server.hpp

• boost_asio/example/http/server3/win_main.cpp

Invocation

This example shows how to customise handler invocation. Completion handlers are added to a priority queue rather than executed
immediately.

• boost_asio/example/invocation/prioritised_handlers.cpp

Iostreams

Two examples showing how to use ip::tcp::iostream.

• boost_asio/example/iostreams/daytime_client.cpp

• boost_asio/example/iostreams/daytime_server.cpp

Multicast

An example showing the use of multicast to transmit packets to a group of subscribers.

• boost_asio/example/multicast/receiver.cpp

• boost_asio/example/multicast/sender.cpp

Serialization

This example shows how Boost.Serialization can be used with asio to encode and decode structures for transmission over a socket.

• boost_asio/example/serialization/client.cpp

• boost_asio/example/serialization/connection.hpp

• boost_asio/example/serialization/server.cpp

• boost_asio/example/serialization/stock.hpp

74

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/posix_main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/http/server3/win_main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/invocation/prioritised_handlers.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/iostreams/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/iostreams/daytime_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/multicast/receiver.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/multicast/sender.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/serialization/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/serialization/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/serialization/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/serialization/stock.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Services

This example demonstrates how to integrate custom functionality (in this case, for logging) into asio's io_service, and how to use a
custom service with basic_stream_socket<>.

• boost_asio/example/services/basic_logger.hpp

• boost_asio/example/services/daytime_client.cpp

• boost_asio/example/services/logger.hpp

• boost_asio/example/services/logger_service.cpp

• boost_asio/example/services/logger_service.hpp

• boost_asio/example/services/stream_socket_service.hpp

SOCKS 4

Example client program implementing the SOCKS 4 protocol for communication via a proxy.

• boost_asio/example/socks4/sync_client.cpp

• boost_asio/example/socks4/socks4.hpp

SSL

Example client and server programs showing the use of the ssl::stream<> template with asynchronous operations.

• boost_asio/example/ssl/client.cpp

• boost_asio/example/ssl/server.cpp

Timeouts

A collection of examples showing how to cancel long running asynchronous operations after a period of time.

• boost_asio/example/timeouts/accept_timeout.cpp

• boost_asio/example/timeouts/connect_timeout.cpp

• boost_asio/example/timeouts/datagram_receive_timeout.cpp

• boost_asio/example/timeouts/stream_receive_timeout.cpp

Timers

Examples showing how to customise deadline_timer using different time types.

• boost_asio/example/timers/tick_count_timer.cpp

• boost_asio/example/timers/time_t_timer.cpp

Porthopper

Example illustrating mixed synchronous and asynchronous operations, and how to use Boost.Lambda with Boost.Asio.

• boost_asio/example/porthopper/protocol.hpp

• boost_asio/example/porthopper/client.cpp

75

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/services/basic_logger.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/services/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/services/logger.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/services/logger_service.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/services/logger_service.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/services/stream_socket_service.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/socks4/sync_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/socks4/socks4.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/ssl/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/ssl/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/timeouts/accept_timeout.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/timeouts/connect_timeout.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/timeouts/datagram_receive_timeout.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/timeouts/stream_receive_timeout.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/timers/tick_count_timer.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/timers/time_t_timer.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/porthopper/protocol.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/porthopper/client.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/porthopper/server.cpp

Nonblocking

Example demonstrating reactor-style operations for integrating a third-party library that wants to perform the I/O operations itself.

• boost_asio/example/nonblocking/third_party_lib.cpp

UNIX Domain Sockets

Examples showing how to use UNIX domain (local) sockets.

• boost_asio/example/local/connect_pair.cpp

• boost_asio/example/local/stream_server.cpp

• boost_asio/example/local/stream_client.cpp

Windows

An example showing how to use the Windows-specific function TransmitFile with Boost.Asio.

• boost_asio/example/windows/transmit_file.cpp

76

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/porthopper/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/nonblocking/third_party_lib.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/local/connect_pair.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/local/stream_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/local/stream_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/windows/transmit_file.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

77

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Core

Type Require-
ments

PlaceholdersFree FunctionsClasses

placeholders::bytes_trans-
ferred

add_serviceconst_buffer
asio_handler_allocateconst_buffers_1 Asynchronous operations

placeholders::errorasio_handler_deallocateinvalid_service_owner AsyncRandomAccessRead-
Deviceplaceholders::iteratorasio_handler_invokeio_service

Error Codes
async_readio_service::id AsyncRandomAccessWrite-

Deviceasync_read_atio_service::service
async_read_untilio_service::strand AsyncReadStream
async_writeio_service::work error::basic_errors AsyncWriteStream
async_write_atmutable_buffer error::netdb_errors CompletionHandler
buffermutable_buffers_1 error::addrinfo_errors ConstBufferSequence
buffers_beginnull_buffers error::misc_errors ConvertibleToConstBuffer
buffers_endservice_already_exists

Type Traits
ConvertibleToMutableBuffer

has_servicestreambuf Handler

Class Templates
read IoObjectService
read_at is_match_condition MutableBufferSequence
read_until is_read_buffered ReadHandler
transfer_allbasic_io_object is_write_buffered Service
transfer_at_leastbasic_streambuf SyncRandomAccessRead-

Deviceuse_servicebuffered_read_stream
writebuffered_stream SyncRandomAccessWrite-

Devicewrite_atbuffered_write_stream
buffers_iterator SyncReadStream

SyncWriteStream
WriteHandler

78

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Networking

I/O Control Com-
mands

Socket OptionsClass TemplatesClasses

ip::multicast::enable_loopbackbasic_datagram_socketip::address
ip::multicast::hopsbasic_deadline_timerip::address_v4 socket_base::bytes_readable
ip::multicast::join_groupbasic_socketip::address_v6 socket_base::non_blocking_io
ip::multicast::leave_groupbasic_raw_socketip::icmp

Type Require-
ments

ip::multicast::outbound_inter-
face

basic_socket_acceptorip::icmp::endpoint
basic_socket_iostreamip::icmp::resolver

ip::tcp::no_delaybasic_socket_streambufip::icmp::socket
ip::unicast::hopsbasic_stream_socketip::resolver_query_base

AcceptHandlerip::v6_onlyip::basic_endpointip::tcp
ConnectHandlersocket_base::broadcastip::basic_resolverip::tcp::acceptor
DatagramSocketServicesocket_base::debugip::basic_resolver_entryip::tcp::endpoint
Endpointsocket_base::do_not_routeip::basic_resolver_iteratorip::tcp::iostream
GettableSocketOptionsocket_base::enable_connec-

tion_aborted
ip::basic_resolver_queryip::tcp::resolver

InternetProtocol

Services
ip::tcp::socket

IoControlCommandsocket_base::keep_aliveip::udp
Protocolsocket_base::lingerip::udp::endpoint
RawSocketServicesocket_base::receive_buf-

fer_size
ip::udp::resolver datagram_socket_service

ResolveHandlerip::udp::socket ip::resolver_service
ResolverServicesocket_base::receive_low_wa-

termark
socket_base raw_socket_service

SettableSocketOption

Free Functions
socket_acceptor_service

SocketAcceptorServicesocket_base::reuse_addressstream_socket_service
SocketServicesocket_base::send_buffer_size
StreamSocketServicesocket_base::send_low_water-

mark
ip::host_name

Serial PortsSSLTimers

Serial Port Op-
tions

ClassesClassesClasses

serial_portssl::contextdeadline_timer

Class Templates
serial_port_basessl::context_base serial_port_base::baud_rate

Class Templates
ssl::stream_base serial_port_base::flow_control

Class Templates
serial_port_base::parity

basic_deadline_timer serial_port_base::stop_bits
basic_serial_porttime_traits serial_port_base::charac-

ter_size
Services

ssl::basic_context

Services ssl::stream

Type Require-
ments

Servicesdeadline_timer_service serial_port_service

Type Require-
ments

ssl::context_service
GettableSerialPortOptionssl::stream_service
SerialPortService
SettableSerialPortOption

TimerService
TimeTraits
WaitHandler

79

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Windows-specificPOSIX-specific

ClassesClass TemplatesClasses

windows::overlapped_ptrlocal::basic_endpointlocal::stream_protocol
windows::random_access_handleposix::basic_descriptorlocal::stream_protocol::accept-

or windows::stream_handleposix::basic_stream_descriptor

Class TemplatesServices
local::stream_protocol::end-
point
l o c a l : : s t r e a m _ p r o -
tocol::iostream windows::basic_handleposix::stream_descriptor_ser-

vicelocal::stream_protocol::socket windows::basic_random_access_handle
local::datagram_protocol

Type Require-
ments

windows::basic_stream_handle
local::datagram_protocol::end-
point Services
local::datagram_protocol::sock-
et windows::random_access_handle_serviceDescriptorServiceposix::descriptor_base windows::stream_handle_serviceStreamDescriptorServiceposix::stream_descriptor

Type Requirements
Free Functions

HandleService
local::connect_pair RandomAccessHandleService

StreamHandleService

Requirements on asynchronous operations
In Boost.Asio, an asynchronous operation is initiated by a function that is named with the prefix async_. These functions will be
referred to as initiating functions.

All initiating functions in Boost.Asio take a function object meeting handler requirements as the final parameter. These handlers
accept as their first parameter an lvalue of type const error_code.

Implementations of asynchronous operations in Boost.Asio may call the application programming interface (API) provided by the
operating system. If such an operating system API call results in an error, the handler will be invoked with a const error_code
lvalue that evaluates to true. Otherwise the handler will be invoked with a const error_code lvalue that evaluates to false.

Unless otherwise noted, when the behaviour of an asynchronous operation is defined "as if" implemented by a POSIX function, the
handler will be invoked with a value of type error_code that corresponds to the failure condition described by POSIX for that
function, if any. Otherwise the handler will be invoked with an implementation-defined error_code value that reflects the operating
system error.

Asynchronous operations will not fail with an error condition that indicates interruption by a signal (POSIX EINTR). Asynchronous
operations will not fail with any error condition associated with non-blocking operations (POSIX EWOULDBLOCK, EAGAIN or EIN-
PROGRESS; Windows WSAEWOULDBLOCK or WSAEINPROGRESS).

All asynchronous operations have an associated io_service object. Where the initiating function is a member function, the asso-
ciated io_service is that returned by the io_service() member function on the same object. Where the initiating function is
not a member function, the associated io_service is that returned by the io_service() member function of the first argument
to the initiating function.

Arguments to initiating functions will be treated as follows:

— If the parameter is declared as a const reference or by-value, the program is not required to guarantee the validity of the argument
after the initiating function completes. The implementation may make copies of the argument, and all copies will be destroyed no
later than immediately after invocation of the handler.

80

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

— If the parameter is declared as a non-const reference, const pointer or non-const pointer, the program must guarantee the validity
of the argument until the handler is invoked.

The library implementation is only permitted to make calls to an initiating function's arguments' copy constructors or destructors
from a thread that satisfies one of the following conditions:

— The thread is executing any member function of the associated io_service object.

— The thread is executing the destructor of the associated io_service object.

— The thread is executing one of the io_service service access functions use_service, add_service or has_service, where
the first argument is the associated io_service object.

— The thread is executing any member function, constructor or destructor of an object of a class defined in this clause, where the
object's io_service() member function returns the associated io_service object.

— The thread is executing any function defined in this clause, where any argument to the function has an io_service() member
function that returns the associated io_service object.

Boost.Asio may use one or more hidden threads to emulate asynchronous functionality. The above requirements are intended
to prevent these hidden threads from making calls to program code. This means that a program can, for example, use thread-
unsafe reference counting in handler objects, provided the program ensures that all calls to an io_service and related objects
occur from the one thread.

The io_service object associated with an asynchronous operation will have unfinished work, as if by maintaining the existence
of one or more objects of class io_service::work constructed using the io_service, until immediately after the handler for the
asynchronous operation has been invoked.

When an asynchronous operation is complete, the handler for the operation will be invoked as if by:

1. Constructing a bound completion handler bch for the handler, as described below.

2. Calling ios.post(bch) to schedule the handler for deferred invocation, where ios is the associated io_service.

This implies that the handler must not be called directly from within the initiating function, even if the asynchronous operation
completes immediately.

A bound completion handler is a handler object that contains a copy of a user-supplied handler, where the user-supplied handler
accepts one or more arguments. The bound completion handler does not accept any arguments, and contains values to be passed as
arguments to the user-supplied handler. The bound completion handler forwards the asio_handler_allocate(), asio_hand-
ler_deallocate(), and asio_handler_invoke() calls to the corresponding functions for the user-supplied handler. A bound
completion handler meets the requirements for a completion handler.

For example, a bound completion handler for a ReadHandler may be implemented as follows:

81

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<class ReadHandler>
struct bound_read_handler
{
 bound_read_handler(ReadHandler handler, const error_code& ec, size_t s)

: handler_(handler), ec_(ec), s_(s)
{
}

void operator()()
{

 handler_(ec_, s_);
}

 ReadHandler handler_;
const error_code ec_;
const size_t s_;

};

template<class ReadHandler>
void* asio_handler_allocate(size_t size,
 bound_read_handler<ReadHandler>* this_handler)
{
using namespace boost::asio;
return asio_handler_allocate(size, &this_handler->handler_);

}

template<class ReadHandler>
void asio_handler_deallocate(void* pointer, std::size_t size,
 bound_read_handler<ReadHandler>* this_handler)
{
using namespace boost::asio;

 asio_handler_deallocate(pointer, size, &this_handler->handler_);
}

template<class F, class ReadHandler>
void asio_handler_invoke(const F& f,
 bound_read_handler<ReadHandler>* this_handler)
{
using namespace boost::asio;

 asio_handler_invoke(f, &this_handler->handler_);
}

If the thread that initiates an asynchronous operation terminates before the associated handler is invoked, the behaviour is implement-
ation-defined. Specifically, on Windows versions prior to Vista, unfinished operations are cancelled when the initiating thread exits.

The handler argument to an initiating function defines a handler identity. That is, the original handler argument and any copies of
the handler argument will be considered equivalent. If the implementation needs to allocate storage for an asynchronous operation,
the implementation will perform asio_handler_allocate(size, &h), where size is the required size in bytes, and h is the
handler. The implementation will perform asio_handler_deallocate(p, size, &h), where p is a pointer to the storage, to
deallocate the storage prior to the invocation of the handler via asio_handler_invoke. Multiple storage blocks may be allocated
for a single asynchronous operation.

Accept handler requirements
An accept handler must meet the requirements for a handler. A value h of an accept handler class should work correctly in the ex-
pression h(ec), where ec is an lvalue of type const error_code.

82

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Buffer-oriented asynchronous random-access read device require-
ments
In the table below, a denotes an asynchronous random access read device object, o denotes an offset of type boost::uint64_t,
mb denotes an object satisfying mutable buffer sequence requirements, and h denotes an object satisfying read handler requirements.

Table 1. Buffer-oriented asynchronous random-access read device requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_read_some_at hand-
ler h will be invoked.

io_service&a.get_io_service();

Initiates an asynchronous operation to
read one or more bytes of data from the
device a at the offset o. The operation is
performed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The async_read_some_at operation
shall always fill a buffer in the sequence
completely before proceeding to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous read
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence mb is 0, the asynchronous read
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes read.

voida.async_read_some_at(o, mb, h);

Buffer-oriented asynchronous random-access write device re-
quirements
In the table below, a denotes an asynchronous write stream object, o denotes an offset of type boost::uint64_t, cb denotes an
object satisfying constant buffer sequence requirements, and h denotes an object satisfying write handler requirements.

83

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 2. Buffer-oriented asynchronous random-access write device requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_write_some_at

handler h will be invoked.

io_service&a.get_io_service();

Initiates an asynchronous operation to
write one or more bytes of data to the
device a at offset o. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The async_write_some_at
operation shall always write a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous write
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence cb is 0, the asynchronous write
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes written.

voida.async_write_some_at(o, cb,

h);

Buffer-oriented asynchronous read stream requirements
In the table below, a denotes an asynchronous read stream object, mb denotes an object satisfying mutable buffer sequence requirements,
and h denotes an object satisfying read handler requirements.

84

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3. Buffer-oriented asynchronous read stream requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_read_some handler h
will be invoked.

io_service&a.io_service();

Initiates an asynchronous operation to
read one or more bytes of data from the
stream a. The operation is performed via
the io_service object a.io_ser-

vice() and behaves according to asyn-
chronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The async_read_some operation shall
always fill a buffer in the sequence com-
pletely before proceeding to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous read
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence mb is 0, the asynchronous read
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes read.

voida.async_read_some(mb, h);

Buffer-oriented asynchronous write stream requirements
In the table below, a denotes an asynchronous write stream object, cb denotes an object satisfying constant buffer sequence require-
ments, and h denotes an object satisfying write handler requirements.

85

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 4. Buffer-oriented asynchronous write stream requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_write_some handler
h will be invoked.

io_service&a.io_service();

Initiates an asynchronous operation to
write one or more bytes of data to the
stream a. The operation is performed via
the io_service object a.io_ser-

vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The async_write_some opera-
tion shall always write a buffer in the se-
quence completely before proceeding to
the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous write
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence cb is 0, the asynchronous write
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes written.

voida.async_write_some(cb, h);

Completion handler requirements
A completion handler must meet the requirements for a handler. A value h of a completion handler class should work correctly in
the expression h().

Connect handler requirements
A connect handler must meet the requirements for a handler. A value h of a connect handler class should work correctly in the ex-
pression h(ec), where ec is an lvalue of type const error_code.

Constant buffer sequence requirements
In the table below, X denotes a class containing objects of type T, a denotes a value of type X and u denotes an identifier.

86

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 5. ConstBufferSequence requirements

assertion/note
pre/post-condition

return typeexpression

T meets the requirements for Convertib-
leToConstBuffer.

TX::value_type

const_iterator meets the requirements
for bidirectional iterators (C++ Std,
24.1.4).

iterator type pointing to TX::const_iterator

post: equal_const_buffer_seq(a,

X(a)) where the binary predicate
X(a);

equal_const_buffer_seq is defined
as

bool equal_const_buffer_seq(
const X& x1, const X& x2)

{
return

 distance(x1.be↵
gin(), x1.end())

== distance(x2.be↵
gin(), x2.end())

&& equal(x1.be↵
gin(), x1.end(),
 x2.be↵
gin(), equal_buffer);
}

and the binary predicate equal_buffer
is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
 const_buffer b1(v1);
 const_buffer b2(v2);
return

 buf↵
fer_cast<const void*>(b1)

== buf↵
fer_cast<const void*>(b2)

&& buf↵
fer_size(b1) == buf↵
fer_size(b2);
}

87

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

post:

distance(a.begin(), a.end())
== distance(u.be↵

gin(), u.end())
&& equal(a.be↵

gin(), a.end(),
 u.be↵
gin(), equal_buffer)

where the binary predicate equal_buf-
fer is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
 const_buffer b1(v1);
 const_buffer b2(v2);
return

 buf↵
fer_cast<const void*>(b1)

== buf↵
fer_cast<const void*>(b2)

&& buf↵
fer_size(b1) == buf↵
fer_size(b2);
}

X u(a);

note: the destructor is applied to every
element of a; all the memory is dealloc-
ated.

void(&a)->~X();

const_iterator or convertible to
const_iterator

a.begin();

const_iterator or convertible to
const_iterator

a.end();

Convertible to const buffer requirements
A type that meets the requirements for convertibility to a const buffer must meet the requirements of CopyConstructible types
(C++ Std, 20.1.3), and the requirements of Assignable types (C++ Std, 23.1).

In the table below, X denotes a class meeting the requirements for convertibility to a const buffer, a and b denote values of type X,
and u, v and w denote identifiers.

88

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 6. ConvertibleToConstBuffer requirements

postconditionexpression

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(v)
&& buffer_size(u) == buffer_size(v)

const_buffer u(a);
const_buffer v(a);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(v)
&& buffer_size(u) == buffer_size(v)

const_buffer u(a);
const_buffer v = a;

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(v)
&& buffer_size(u) == buffer_size(v)

const_buffer u(a);
const_buffer v; v = a;

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)
&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
const X& v = a;
const_buffer w(v);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)
&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
X v(a);
const_buffer w(v);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)
&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
X v = a;
const_buffer w(v);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)
&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
X v(b); v = a;
const_buffer w(v);

Convertible to mutable buffer requirements
A type that meets the requirements for convertibility to a mutable buffer must meet the requirements of CopyConstructible types
(C++ Std, 20.1.3), and the requirements of Assignable types (C++ Std, 23.1).

In the table below, X denotes a class meeting the requirements for convertibility to a mutable buffer, a and b denote values of type
X, and u, v and w denote identifiers.

89

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 7. ConvertibleToMutableBuffer requirements

postconditionexpression

buffer_cast<void*>(u) == buffer_cast<void*>(v)
&& buffer_size(u) == buffer_size(v)

mutable_buffer u(a);
mutable_buffer v(a);

buffer_cast<void*>(u) == buffer_cast<void*>(v)
&& buffer_size(u) == buffer_size(v)

mutable_buffer u(a);
mutable_buffer v = a;

buffer_cast<void*>(u) == buffer_cast<void*>(v)
&& buffer_size(u) == buffer_size(v)

mutable_buffer u(a);
mutable_buffer v; v = a;

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
const X& v = a;
mutable_buffer w(v);

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
X v(a);
mutable_buffer w(v);

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
X v = a;
mutable_buffer w(v);

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
X v(b); v = a;
mutable_buffer w(v);

Datagram socket service requirements
A datagram socket service must meet the requirements for a socket service, as well as the additional requirements listed below.

In the table below, X denotes a datagram socket service class for protocol Protocol, a denotes a value of type X, b denotes a value
of type X::implementation_type, e denotes a value of type Protocol::endpoint, ec denotes a value of type error_code,
f denotes a value of type socket_base::message_flags, mb denotes a value satisfying mutable buffer sequence requirements,
rh denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and
wh denotes a value meeting WriteHandler requirements.

90

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 8. DatagramSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, rh);

connected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

pre: a.is_open(b).
Reads one or more bytes of data from an
unconnected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive_from(b, mb, e, f,

ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

91

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from an
unconnected socket b. The operation is
performed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
The program must ensure the object e is
valid until the handler for the asynchron-
ous operation is invoked.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_receive_from(b, mb, e,

f, rh);

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_ta.send(b, cb, f, ec);

92

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

pre: a.is_open(b).
Writes one or more bytes of data to an
unconnected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_t
const typename Protocol::end↵
point& u = e;
a.send_to(b, cb, u, f, ec);

93

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to an un-
connected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

void
const typename Protocol::end↵
point& u = e;
a.async_send(b, cb, u, f, wh);

Descriptor service requirements
A descriptor service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a descriptor service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, n denotes a value of type X::native_type, ec denotes a value of type error_code, i denotes a value meeting
IoControlCommand requirements, and u and v denote identifiers.

94

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 9. DescriptorService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a descriptor. Must satisfy the
requirements of CopyConstructible
types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

X::native_type

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to
complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

error_code
a.close(b, ec);

X::native_type
a.native(b);

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

pre: a.is_open(b).error_code
a.io_control(b, i, ec);

95

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Endpoint requirements
An endpoint must meet the requirements of CopyConstructible types (C++ Std, 20.1.3), and the requirements of Assignable
types (C++ Std, 23.1).

In the table below, X denotes an endpoint class, a denotes a value of type X, s denotes a size in bytes, and u denotes an identifier.

96

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 10. Endpoint requirements

assertion/note
pre/post-conditions

typeexpression

type meeting protocol requirementsX::protocol_type

X u;

X();

protocol_typea.protocol();

Returns a pointer suitable for passing as
the address argument to POSIX functions
such as accept(), getpeername(),
getsockname() and recvfrom(). The
implementation shall perform a reinter-
pret_cast on the pointer to convert it
to sockaddr*.

a pointera.data();

Returns a pointer suitable for passing as
the address argument to POSIX functions
such as connect(), or as the dest_addr
argument to POSIX functions such as
sendto(). The implementation shall
perform a reinterpret_cast on the
pointer to convert it to const sockad-
dr*.

a pointerconst X& u = a; u.data();

Returns a value suitable for passing as the
address_len argument to POSIX functions
such as connect(), or as the dest_len
argument to POSIX functions such as
sendto(), after appropriate integer con-
version has been performed.

size_ta.size();

post: a.size() == s
Passed the value contained in the ad-
dress_len argument to POSIX functions
such as accept(), getpeername(),
getsockname() and recvfrom(), after
successful completion of the function.
Permitted to throw an exception if the
protocol associated with the endpoint ob-
ject a does not support the specified size.

a.resize(s);

Returns a value suitable for passing as the
address_len argument to POSIX functions
such as accept(), getpeername(),
getsockname() and recvfrom(), after
appropriate integer conversion has been
performed.

size_ta.capacity();

97

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/accept.html
http://www.opengroup.org/onlinepubs/000095399/functions/getpeername.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockname.html
http://www.opengroup.org/onlinepubs/000095399/functions/recvfrom.html
http://www.opengroup.org/onlinepubs/000095399/functions/connect.html
http://www.opengroup.org/onlinepubs/000095399/functions/sendto.html
http://www.opengroup.org/onlinepubs/000095399/functions/connect.html
http://www.opengroup.org/onlinepubs/000095399/functions/sendto.html
http://www.opengroup.org/onlinepubs/000095399/functions/accept.html
http://www.opengroup.org/onlinepubs/000095399/functions/getpeername.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockname.html
http://www.opengroup.org/onlinepubs/000095399/functions/recvfrom.html
http://www.opengroup.org/onlinepubs/000095399/functions/accept.html
http://www.opengroup.org/onlinepubs/000095399/functions/getpeername.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockname.html
http://www.opengroup.org/onlinepubs/000095399/functions/recvfrom.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Gettable serial port option requirements
In the table below, X denotes a serial port option class, a denotes a value of X, ec denotes a value of type error_code, and s denotes
a value of implementation-defined type storage (where storage is the type DCB on Windows and termios on POSIX platforms),
and u denotes an identifier.

Table 11. GettableSerialPortOption requirements

assertion/note
pre/post-conditions

typeexpression

Retrieves the value of the serial port op-
tion from the storage.
If successful, sets ec such that !ec is true.
If an error occurred, sets ec such that
!!ec is true. Returns ec.

error_codeconst storage& u = s;

a.load(u, ec);

Gettable socket option requirements
In the table below, X denotes a socket option class, a denotes a value of X, p denotes a value that meets the protocol requirements,
and u denotes an identifier.

Table 12. GettableSocketOption requirements

assertion/note
pre/post-conditions

typeexpression

Returns a value suitable for passing as the
level argument to POSIX getsockopt()

(or equivalent).

inta.level(p);

Returns a value suitable for passing as the
option_name argument to POSIX get-

sockopt() (or equivalent).

inta.name(p);

Returns a pointer suitable for passing as
the option_value argument to POSIX
getsockopt() (or equivalent).

a pointer, convertible to void*a.data(p);

Returns a value suitable for passing as the
option_len argument to POSIX getsock-

opt() (or equivalent), after appropriate
integer conversion has been performed.

size_ta.size(p);

post: a.size(p) == s.
Passed the value contained in the op-
tion_len argument to POSIX getsock-

opt() (or equivalent) after successful
completion of the function. Permitted to
throw an exception if the socket option
object a does not support the specified
size.

a.resize(p, s);

98

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Handlers
A handler must meet the requirements of CopyConstructible types (C++ Std, 20.1.3).

In the table below, X denotes a handler class, h denotes a value of X, p denotes a pointer to a block of allocated memory of type
void*, s denotes the size for a block of allocated memory, and f denotes a function object taking no arguments.

Table 13. Handler requirements

assertion/note
pre/post-conditions

return typeexpression

Returns a pointer to a block of memory
of size s. The pointer must satisfy the
same alignment requirements as a pointer
returned by ::operator new(). Throws
bad_alloc on failure.
The asio_handler_allocate() func-
tion is located using argument-dependent
l o o k u p . T h e f u n c t i o n
boost::asio::asio_handler_alloc-

ate() serves as a default if no user-sup-
plied function is available.

void*
using namespace boost::asio;
asio_handler_allocate(s, &h);

Frees a block of memory associated with
a pointer p, of at least size s, that was
previously allocated using asio_hand-
ler_allocate().
The asio_handler_deallocate()

function is located using argument-depend-
ent lookup. The funct ion
boost::asio::asio_handler_deal-

locate() serves as a default if no user-
supplied function is available.

using namespace boost::asio;
asio_handler_dealloc↵
ate(p, s, &h);

Causes the function object f to be ex-
ecuted as if by calling f().
The asio_handler_invoke() function
is located using argument-dependent
l o o k u p . T h e f u n c t i o n
boost::asio::asio_handler_in-

voke() serves as a default if no user-
supplied function is available.

using namespace boost::asio;
asio_handler_invoke(f, &h);

Handle service requirements
A handle service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a handle service class, a denotes a value of type X, b denotes a value of type X::implementation_type,
n denotes a value of type X::native_type, ec denotes a value of type error_code, and u and v denote identifiers.

99

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 14. HandleService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a handle. Must satisfy the re-
quirements of CopyConstructible

types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

X::native_type

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to
complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

error_code
a.close(b, ec);

X::native_type
a.native(b);

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

Internet protocol requirements
An internet protocol must meet the requirements for a protocol as well as the additional requirements listed below.

In the table below, X denotes an internet protocol class, a denotes a value of type X, and b denotes a value of type X.

100

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 15. InternetProtocol requirements

assertion/note
pre/post-conditions

return typeexpression

The type of a resolver for the protocol.ip::basic_resolver<X>X::resolver

Returns an object representing the IP
version 4 protocol.

XX::v4()

Returns an object representing the IP
version 6 protocol.

XX::v6()

Returns whether two protocol objects are
equal.

convertible to boola == b

Returns !(a == b).convertible to boola != b

I/O control command requirements
In the table below, X denotes an I/O control command class, a denotes a value of X, and u denotes an identifier.

Table 16. IoControlCommand requirements

assertion/note
pre/post-conditions

typeexpression

Returns a value suitable for passing as the
request argument to POSIX ioctl() (or
equivalent).

inta.name();

a pointer, convertible to void*a.data();

I/O object service requirements
An I/O object service must meet the requirements for a service, as well as the requirements listed below.

In the table below, X denotes an I/O object service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, and u denotes an identifier.

101

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/ioctl.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 17. IoObjectService requirements

assertion/note
pre/post-condition

return typeexpression

X::implementation_type

note: X::implementation_type has a
public default constructor and destructor.

X::implementation_type u;

a.construct(b);

note: destroy() will only be called on
a value that has previously been initialised
with construct().

a.destroy(b);

Mutable buffer sequence requirements
In the table below, X denotes a class containing objects of type T, a denotes a value of type X and u denotes an identifier.

102

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 18. MutableBufferSequence requirements

assertion/note
pre/post-condition

return typeexpression

T meets the requirements for Convertib-
leToMutableBuffer.

TX::value_type

const_iterator meets the requirements
for bidirectional iterators (C++ Std,
24.1.4).

iterator type pointing to TX::const_iterator

post: equal_mutable_buffer_seq(a,
X(a)) where the binary predicate

X(a);

equal_mutable_buffer_seq is
defined as

bool equal_mutable_buffer_seq(
const X& x1, const X& x2)

{
return

 distance(x1.be↵
gin(), x1.end())

== distance(x2.be↵
gin(), x2.end())

&& equal(x1.be↵
gin(), x1.end(),
 x2.be↵
gin(), equal_buffer);
}

and the binary predicate equal_buffer
is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
 mutable_buffer b1(v1);
 mutable_buffer b2(v2);
return

 buf↵
fer_cast<const void*>(b1)

== buf↵
fer_cast<const void*>(b2)

&& buf↵
fer_size(b1) == buf↵
fer_size(b2);
}

103

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

post:

distance(a.begin(), a.end())
== distance(u.be↵

gin(), u.end())
&& equal(a.be↵

gin(), a.end(),
 u.be↵
gin(), equal_buffer)

where the binary predicate equal_buf-
fer is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
 mutable_buffer b1(v1);
 mutable_buffer b2(v2);
return

 buf↵
fer_cast<const void*>(b1)

== buf↵
fer_cast<const void*>(b2)

&& buf↵
fer_size(b1) == buf↵
fer_size(b2);
}

X u(a);

note: the destructor is applied to every
element of a; all the memory is dealloc-
ated.

void(&a)->~X();

const_iterator or convertible to
const_iterator

a.begin();

const_iterator or convertible to
const_iterator

a.end();

Protocol requirements
A protocol must meet the requirements of CopyConstructible types (C++ Std, 20.1.3), and the requirements of Assignable
types (C++ Std, 23.1).

In the table below, X denotes a protocol class, and a denotes a value of X.

104

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 19. Protocol requirements

assertion/note
pre/post-conditions

return typeexpression

type meeting endpoint requirementsX::endpoint

Returns a value suitable for passing as the
domain argument to POSIX socket()

(or equivalent).

inta.family()

Returns a value suitable for passing as the
type argument to POSIX socket() (or
equivalent).

inta.type()

Returns a value suitable for passing as the
protocol argument to POSIX socket()

(or equivalent).

inta.protocol()

Random access handle service requirements
A random access handle service must meet the requirements for a handle service, as well as the additional requirements listed below.

In the table below, X denotes a random access handle service class, a denotes a value of type X, b denotes a value of type X::imple-
mentation_type, ec denotes a value of type error_code, o denotes an offset of type boost::uint64_t, mb denotes a value satisfying
mutable buffer sequence requirements, rh denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant
buffer sequence requirements, and wh denotes a value meeting WriteHandler requirements.

105

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/socket.html
http://www.opengroup.org/onlinepubs/000095399/functions/socket.html
http://www.opengroup.org/onlinepubs/000095399/functions/socket.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 20. RandomAccessHandleService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
handle b at offset o.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.read_some_at(b, o, mb, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_read_some_at(b, o, mb,

rh);

handle b at offset o. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

106

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
handle b at offset o.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some_at(b, o, cb, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a
handle b at offset o. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some_at(b, o, cb,

wh);

Raw socket service requirements
A raw socket service must meet the requirements for a socket service, as well as the additional requirements listed below.

In the table below, X denotes a raw socket service class for protocol Protocol, a denotes a value of type X, b denotes a value of
type X::implementation_type, e denotes a value of type Protocol::endpoint, ec denotes a value of type error_code, f
denotes a value of type socket_base::message_flags, mb denotes a value satisfying mutable buffer sequence requirements, rh

107

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh
denotes a value meeting WriteHandler requirements.

108

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 21. RawSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, rh);

connected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

pre: a.is_open(b).
Reads one or more bytes of data from an
unconnected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive_from(b, mb, e, f,

ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

109

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from an
unconnected socket b. The operation is
performed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
The program must ensure the object e is
valid until the handler for the asynchron-
ous operation is invoked.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_receive_from(b, mb, e,

f, rh);

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_ta.send(b, cb, f, ec);

110

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

pre: a.is_open(b).
Writes one or more bytes of data to an
unconnected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_t
const typename Protocol::end↵
point& u = e;
a.send_to(b, cb, u, f, ec);

111

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to an un-
connected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

void
const typename Protocol::end↵
point& u = e;
a.async_send(b, cb, u, f, wh);

Read handler requirements
A read handler must meet the requirements for a handler. A value h of a read handler class should work correctly in the expression
h(ec, s), where ec is an lvalue of type const error_code and s is an lvalue of type const size_t.

Resolve handler requirements
A resolve handler must meet the requirements for a handler. A value h of a resolve handler class should work correctly in the expression
h(ec, i), where ec is an lvalue of type const error_code and i is an lvalue of type const ip::basic_resolver_iterat-
or<InternetProtocol>. InternetProtocol is the template parameter of the resolver_service which is used to initiate the
asynchronous operation.

Resolver service requirements
A resolver service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a resolver service class for protocol InternetProtocol, a denotes a value of type X, b denotes a
value of type X::implementation_type, q denotes a value of type ip::basic_resolver_query<InternetProtocol>, e
denotes a value of type ip::basic_endpoint<InternetProtocol>, ec denotes a value of type error_code, and h denotes a
value meeting ResolveHandler requirements.

112

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 22. ResolverService requirements

assertion/note
pre/post-condition

return typeexpression

From IoObjectService requirements. Im-
plicitly cancels asynchronous resolve op-
erations, as if by calling a.cancel(b,
ec).

a.destroy(b);

Causes any outstanding asynchronous re-
solve operations to complete as soon as
possible. Handlers for cancelled opera-
tions shall be passed the error code er-
ror::operation_aborted.

error_code
a.cancel(b, ec);

On success, returns an iterator i such that
i != ip::basic_resolver_iterat-

or<InternetProtocol>(). Otherwise
returns ip::basic_resolver_iterat-
or<InternetProtocol>().

ip::basic_resolver_iterator<
 InternetProtocol>

a.resolve(b, q, ec);

Initiates an asynchronous resolve opera-
tion that is performed via the io_ser-
vice object a.io_service() and be-
haves according to asynchronous opera-
tion requirements.
If the operation completes successfully,
the ResolveHandler object h shall be
invoked with an iterator object i such that
the condition i != ip::basic_resolv-
er_iterator<InternetProtocol>()

holds. Otherwise it is invoked with
ip::basic_resolver_iterator<In-

ternetProtocol>().

a.async_resolve(b, q, h);

On success, returns an iterator i such that
i != ip::basic_resolver_iterat-

or<InternetProtocol>(). Otherwise
returns ip::basic_resolver_iterat-
or<InternetProtocol>().

ip::basic_resolver_iterator<
 InternetProtocol>

a.resolve(b, e, ec);

Initiates an asynchronous resolve opera-
tion that is performed via the io_ser-
vice object a.io_service() and be-
haves according to asynchronous opera-
tion requirements.
If the operation completes successfully,
the ResolveHandler object h shall be
invoked with an iterator object i such that
the condition i != ip::basic_resolv-
er_iterator<InternetProtocol>()

holds. Otherwise it is invoked with
ip::basic_resolver_iterator<In-

ternetProtocol>().

a.async_resolve(b, e, h);

113

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Serial port service requirements
A serial port service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a serial port service class, a denotes a value of type X, d denotes a serial port device name of type
std::string, b denotes a value of type X::implementation_type, n denotes a value of type X::native_type, ec denotes a
value of type error_code, s denotes a value meeting SettableSerialPortOption requirements, g denotes a value meeting
GettableSerialPortOption requirements, mb denotes a value satisfying mutable buffer sequence requirements, rh denotes a
value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh denotes a
value meeting WriteHandler requirements. and u and v denote identifiers.

114

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 23. SerialPortService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a serial port. Must satisfy the

X::native_type

requirements of CopyConstructible
types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
const std::string& u = d;
a.open(b, u, ec);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_type
a.native(b);

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-

error_code
a.cancel(b, ec);

sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

115

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).error_code
a.set_option(b, s, ec);

pre: a.is_open(b).error_code
a.get_option(b, g, ec);

pre: a.is_open(b).error_code
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.get_option(v, g, ec);

pre: a.is_open(b).error_code
a.send_break(b, ec);

pre: a.is_open(b).
Reads one or more bytes of data from a
serial port b.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

size_ta.read_some(b, mb, ec);

116

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a
serial port b. The operation is performed
via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_read_some(b, mb, rh);

pre: a.is_open(b).
Writes one or more bytes of data to a
serial port b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some(b, cb, ec);

117

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a serial
port b. The operation is performed via the
io_service object a.get_io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some(b, cb, wh);

Service requirements
A class is a service if it is publicly derived from another service, or if it is a class derived from io_service::service and contains
a publicly-accessible declaration as follows:

static io_service::id id;

All services define a one-argument constructor that takes a reference to the io_service object that owns the service. This constructor
is explicit, preventing its participation in automatic conversions. For example:

118

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class my_service : public io_service::service
{
public:
static io_service::id id;
explicit my_service(io_service& ios);

private:
virtual void shutdown_service();
...

};

A service's shutdown_service member function must cause all copies of user-defined handler objects that are held by the service
to be destroyed.

Settable serial port option requirements
In the table below, X denotes a serial port option class, a denotes a value of X, ec denotes a value of type error_code, and s denotes
a value of implementation-defined type storage (where storage is the type DCB on Windows and termios on POSIX platforms),
and u denotes an identifier.

Table 24. SettableSerialPortOption requirements

assertion/note
pre/post-conditions

typeexpression

Saves the value of the serial port option
to the storage.
If successful, sets ec such that !ec is true.
If an error occurred, sets ec such that
!!ec is true. Returns ec.

error_codeconst X& u = a;

u.store(s, ec);

Settable socket option requirements
In the table below, X denotes a socket option class, a denotes a value of X, p denotes a value that meets the protocol requirements,
and u denotes an identifier.

119

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 25. SettableSocketOption requirements

assertion/note
pre/post-conditions

typeexpression

Returns a value suitable for passing as the
level argument to POSIX setsockopt()

(or equivalent).

inta.level(p);

Returns a value suitable for passing as the
option_name argument to POSIX set-

sockopt() (or equivalent).

inta.name(p);

Returns a pointer suitable for passing as
the option_value argument to POSIX
setsockopt() (or equivalent).

a pointer, convertible to const void*const X& u = a; u.data(p);

Returns a value suitable for passing as the
option_len argument to POSIX setsock-

opt() (or equivalent), after appropriate
integer conversion has been performed.

size_ta.size(p);

Socket acceptor service requirements
A socket acceptor service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a socket acceptor service class for protocol Protocol, a denotes a value of type X, b denotes a value
of type X::implementation_type, p denotes a value of type Protocol, n denotes a value of type X::native_type, e denotes
a value of type Protocol::endpoint, ec denotes a value of type error_code, s denotes a value meeting SettableSocketOption
requirements, g denotes a value meeting GettableSocketOption requirements, i denotes a value meeting IoControlCommand
requirements, k denotes a value of type basic_socket<Protocol, SocketService> where SocketService is a type meeting
socket service requirements, ah denotes a value meeting AcceptHandler requirements, and u and v denote identifiers.

120

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 26. SocketAcceptorService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a socket acceptor. Must satisfy

X::native_type

the requirements of CopyConstruct-
ible types (C++ Std, 20.1.3), and the re-
quirements of Assignable types (C++
Std, 23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.open(b, p, ec);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, p, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_type
a.native(b);

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-

error_code
a.cancel(b, ec);

sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

pre: a.is_open(b).error_code
a.set_option(b, s, ec);

121

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).error_code
a.get_option(b, g, ec);

pre: a.is_open(b).error_code
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.get_option(v, g, ec);

pre: a.is_open(b).error_code
a.io_control(b, i, ec);

pre: a.is_open(b).error_code
const typename Protocol::end↵
point& u = e;
a.bind(b, u, ec);

pre: a.is_open(b).Protocol::endpoint
a.local_endpoint(b, ec);

pre: a.is_open(b).Protocol::endpoint
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.local_endpoint(v, ec);

pre : a.is_open(b) &&

!k.is_open().
post: k.is_open()

error_code
a.accept(b, k, &e, ec);

pre : a.is_open(b) &&

!k.is_open().
post: k.is_open()

error_code
a.accept(b, k, 0, ec);

pre : a.is_open(b) &&

!k.is_open().
Initiates an asynchronous accept operation
that is performed via the io_service
object a.io_service() and behaves
according to asynchronous operation re-
quirements.
The program must ensure the objects k
and e are valid until the handler for the
asynchronous operation is invoked.

a.async_accept(b, k, &e, ah);

122

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre : a.is_open(b) &&

!k.is_open().
Initiates an asynchronous accept operation
that is performed via the io_service
object a.io_service() and behaves
according to asynchronous operation re-
quirements.
The program must ensure the object k is
valid until the handler for the asynchron-
ous operation is invoked.

a.async_accept(b, k, 0, ah);

Socket service requirements
A socket service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a socket service class for protocol Protocol, a denotes a value of type X, b denotes a value of type
X::implementation_type, p denotes a value of type Protocol, n denotes a value of type X::native_type, e denotes a value
of type Protocol::endpoint, ec denotes a value of type error_code, s denotes a value meeting SettableSocketOption
requirements, g denotes a value meeting GettableSocketOption requirements, i denotes a value meeting IoControlCommand
requirements, h denotes a value of type socket_base::shutdown_type, ch denotes a value meeting ConnectHandler require-
ments, and u and v denote identifiers.

123

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 27. SocketService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a socket. Must satisfy the re-

X::native_type

quirements of CopyConstructible

types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.open(b, p, ec);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, p, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_type
a.native(b);

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-

error_code
a.cancel(b, ec);

sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

pre: a.is_open(b).error_code
a.set_option(b, s, ec);

124

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).error_code
a.get_option(b, g, ec);

pre: a.is_open(b).error_code
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.get_option(v, g, ec);

pre: a.is_open(b).error_code
a.io_control(b, i, ec);

pre: a.is_open(b).bool
a.at_mark(b, ec);

pre: a.is_open(b).bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.at_mark(v, ec);

pre: a.is_open(b).size_t
a.available(b, ec);

pre: a.is_open(b).size_t
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.available(v, ec);

pre: a.is_open(b).error_code
const typename Protocol::end↵
point& u = e;
a.bind(b, u, ec);

pre: a.is_open(b).error_code
a.shutdown(b, h, ec);

pre: a.is_open(b).Protocol::endpoint
a.local_endpoint(b, ec);

pre: a.is_open(b).Protocol::endpoint
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.local_endpoint(v, ec);

125

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).Protocol::endpoint
a.remote_endpoint(b, ec);

pre: a.is_open(b).Protocol::endpoint
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.remote_endpoint(v, ec);

pre: a.is_open(b).error_code
const typename Protocol::end↵
point& u = e;
a.connect(b, u, ec);

pre: a.is_open(b).
Initiates an asynchronous connect opera-
tion that is performed via the io_ser-
vice object a.io_service() and be-
haves according to asynchronous opera-
tion requirements.

const typename Protocol::end↵
point& u = e;
a.async_connect(b, u, ch);

Stream descriptor service requirements
A stream descriptor service must meet the requirements for a descriptor service, as well as the additional requirements listed below.

In the table below, X denotes a stream descriptor service class, a denotes a value of type X, b denotes a value of type X::implement-
ation_type, ec denotes a value of type error_code, mb denotes a value satisfying mutable buffer sequence requirements, rh
denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh
denotes a value meeting WriteHandler requirements.

126

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 28. StreamDescriptorService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
descriptor b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.read_some(b, mb, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_read_some(b, mb, rh);

descriptor b. The operation is performed
via the io_service object a.io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

127

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
descriptor b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some(b, cb, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a
descriptor b. The operation is performed
via the io_service object a.io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some(b, cb, wh);

Stream handle service requirements
A stream handle service must meet the requirements for a handle service, as well as the additional requirements listed below.

In the table below, X denotes a stream handle service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, ec denotes a value of type error_code, mb denotes a value satisfying mutable buffer sequence requirements, rh denotes
a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh denotes
a value meeting WriteHandler requirements.

128

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 29. StreamHandleService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
handle b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.read_some(b, mb, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_read_some(b, mb, rh);

handle b. The operation is performed via
the io_service object a.io_ser-

vice() and behaves according to asyn-
chronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

129

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
handle b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some(b, cb, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a
handle b. The operation is performed via
the io_service object a.io_ser-

vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some(b, cb, wh);

Stream socket service requirements
A stream socket service must meet the requirements for a socket service, as well as the additional requirements listed below.

In the table below, X denotes a stream socket service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, ec denotes a value of type error_code, f denotes a value of type socket_base::message_flags, mb denotes a
value satisfying mutable buffer sequence requirements, rh denotes a value meeting ReadHandler requirements, cb denotes a value
satisfying constant buffer sequence requirements, and wh denotes a value meeting WriteHandler requirements.

130

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 30. StreamSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, rh);

connected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

131

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.send(b, cb, f, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.io_service() and behaves according
to asynchronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

Buffer-oriented synchronous random-access read device require-
ments
In the table below, a denotes a synchronous random-access read device object, o denotes an offset of type boost::uint64_t, mb
denotes an object satisfying mutable buffer sequence requirements, and ec denotes an object of type error_code.

132

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 31. Buffer-oriented synchronous random-access read device requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t ↵
s = a.read_some_at(o, mb, ec);
if (ec) throw system_error(ec);
return s;

size_ta.read_some_at(o, mb);

Reads one or more bytes of data from the
device a at offset o.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The read_some_at operation shall al-
ways fill a buffer in the sequence com-
pletely before proceeding to the next.
If successful, returns the number of bytes
read and sets ec such that !ec is true. If
an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence mb is 0, the function shall return
0 immediately.

size_ta.read_some_at(o, mb, ec);

Buffer-oriented synchronous random-access write device require-
ments
In the table below, a denotes a synchronous random-access write device object, o denotes an offset of type boost::uint64_t, cb
denotes an object satisfying constant buffer sequence requirements, and ec denotes an object of type error_code.

133

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 32. Buffer-oriented synchronous random-access write device requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t ↵
s = a.write_some(o, cb, ec);
if (ec) throw system_error(ec);
return s;

size_ta.write_some_at(o, cb);

Writes one or more bytes of data to the
device a at offset o.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The write_some_at operation
shall always write a buffer in the sequence
completely before proceeding to the next.
If successful, returns the number of bytes
written and sets ec such that !ec is true.
If an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence cb is 0, the function shall return
0 immediately.

size_ta.write_some_at(o, cb, ec);

Buffer-oriented synchronous read stream requirements
In the table below, a denotes a synchronous read stream object, mb denotes an object satisfying mutable buffer sequence requirements,
and ec denotes an object of type error_code.

134

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 33. Buffer-oriented synchronous read stream requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t s = a.read_some(mb, ec);
if (ec) throw system_error(ec);
return s;

size_ta.read_some(mb);

Reads one or more bytes of data from the
stream a.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The read_some operation shall always
fill a buffer in the sequence completely
before proceeding to the next.
If successful, returns the number of bytes
read and sets ec such that !ec is true. If
an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence mb is 0, the function shall return
0 immediately.

size_ta.read_some(mb, ec);

Buffer-oriented synchronous write stream requirements
In the table below, a denotes a synchronous write stream object, cb denotes an object satisfying constant buffer sequence requirements,
and ec denotes an object of type error_code.

135

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 34. Buffer-oriented synchronous write stream requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t ↵
s = a.write_some(cb, ec);
if (ec) throw system_error(ec);
return s;

size_ta.write_some(cb);

Writes one or more bytes of data to the
stream a.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The write_some operation shall
always write a buffer in the sequence
completely before proceeding to the next.
If successful, returns the number of bytes
written and sets ec such that !ec is true.
If an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence cb is 0, the function shall return
0 immediately.

size_ta.write_some(cb, ec);

Time traits requirements
In the table below, X denotes a time traits class for time type Time, t, t1, and t2 denote values of type Time, and d denotes a value
of type X::duration_type.

136

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 35. TimeTraits requirements

assertion/note
pre/post-condition

return typeexpression

Represents an absolute time. Must support
default construction, and meet the require-
ments for CopyConstructible and As-
signable.

TimeX::time_type

Represents the difference between two
absolute times. Must support default con-
struction, and meet the requirements for
CopyConstructible and Assignable.
A duration can be positive, negative, or
zero.

X::duration_type

Returns the current time.time_typeX::now();

Returns a new absolute time resulting
from adding the duration d to the absolute
time t.

time_typeX::add(t, d);

Returns the duration resulting from sub-
tracting t2 from t1.

duration_typeX::subtract(t1, t2);

Returns whether t1 is to be treated as less
than t2.

boolX::less_than(t1, t2);

Returns the date_time::time_dura-
tion_type value that most closely rep-
resents the duration d.

date_time::time_duration_typeX::to_posix_duration(d);

Timer service requirements
A timer service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a timer service class for time type Time and traits type TimeTraits, a denotes a value of type X, b
denotes a value of type X::implementation_type, t denotes a value of type Time, d denotes a value of type
TimeTraits::duration_type, e denotes a value of type error_code, and h denotes a value meeting WaitHandler requirements.

137

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 36. TimerService requirements

assertion/note
pre/post-condition

return typeexpression

From IoObjectService requirements. Im-
plicitly cancels asynchronous wait opera-
tions, as if by calling a.cancel(b, e).

a.destroy(b);

Causes any outstanding asynchronous
wait operations to complete as soon as
possible. Handlers for cancelled opera-
tions shall be passed the error code er-
ror::operation_aborted. Sets e to
indicate success or failure. Returns the
number of operations that were cancelled.

size_t
a.cancel(b, e);

Timea.expires_at(b);

Implicitly cancels asynchronous wait op-
erations, as if by calling a.cancel(b,
e). Returns the number of operations that
were cancelled.
post: a.expires_at(b) == t.

size_t
a.expires_at(b, t, e);

Returns a value equivalent to
TimeTraits::subtract(a.ex-

pires_at(b), TimeTraits::now()).

TimeTraits::duration_typea.expires_from_now(b);

Equivalent to a.expires_at(b,

TimeTraits::add(TimeTraits::now(),

d), e).

size_t
a.expires_from_now(b, d, e);

Sets e to indicate success or failure. Re-
turns e.
p o s t : ! ! e | |

!TimeTraits::lt(TimeTraits::now(),

a.expires_at(b)).

error_code
a.wait(b, e);

Initiates an asynchronous wait operation
that is performed via the io_service
object a.io_service() and behaves
according to asynchronous operation re-
quirements.
The handler shall be posted for execution
only if the condition !!ec ||

!TimeTraits::lt(TimeTraits::now(),

a.expires_at(b)) holds, where ec is
the error code to be passed to the handler.

a.async_wait(b, h);

Wait handler requirements
A wait handler must meet the requirements for a handler. A value h of a wait handler class should work correctly in the expression
h(ec), where ec is an lvalue of type const error_code.

138

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Write handler requirements
A write handler must meet the requirements for a handler. A value h of a write handler class should work correctly in the expression
h(ec, s), where ec is an lvalue of type const error_code and s is an lvalue of type const size_t.

add_service

template<
typename Service>

void add_service(
 io_service & ios,
 Service * svc);

This function is used to add a service to the io_service.

Parameters

ios The io_service object that owns the service.

svc The service object. On success, ownership of the service object is transferred to the io_service. When the io_service object
is destroyed, it will destroy the service object by performing:

delete static_cast<io_service::service*>(svc)

Exceptions

boost::asio::service_already_exists Thrown if a service of the given type is already present in the io_service.

boost::asio::invalid_service_owner Thrown if the service's owning io_service is not the io_service object specified by the ios
parameter.

asio_handler_allocate
Default allocation function for handlers.

void * asio_handler_allocate(
 std::size_t size,

...);

Asynchronous operations may need to allocate temporary objects. Since asynchronous operations have a handler function object,
these temporary objects can be said to be associated with the handler.

Implement asio_handler_allocate and asio_handler_deallocate for your own handlers to provide custom allocation for these temporary
objects.

This default implementation is simply:

return ::operator new(size);

Remarks

All temporary objects associated with a handler will be deallocated before the upcall to the handler is performed. This allows the
same memory to be reused for a subsequent asynchronous operation initiated by the handler.

139

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

class my_handler;

void* asio_handler_allocate(std::size_t size, my_handler* context)
{
return ::operator new(size);

}

void asio_handler_deallocate(void* pointer, std::size_t size,
 my_handler* context)
{
::operator delete(pointer);

}

asio_handler_deallocate
Default deallocation function for handlers.

void asio_handler_deallocate(
void * pointer,

 std::size_t size,
...);

Implement asio_handler_allocate and asio_handler_deallocate for your own handlers to provide custom allocation for the associated
temporary objects.

This default implementation is simply:

::operator delete(pointer);

asio_handler_invoke
Default invoke function for handlers.

template<
typename Function>

void asio_handler_invoke(
 Function function,

...);

Completion handlers for asynchronous operations are invoked by the io_service associated with the corresponding object (e.g. a
socket or deadline_timer). Certain guarantees are made on when the handler may be invoked, in particular that a handler can only
be invoked from a thread that is currently calling boost::asio::io_service::run() on the corresponding io_service object. Handlers may
subsequently be invoked through other objects (such as boost::asio::strand objects) that provide additional guarantees.

When asynchronous operations are composed from other asynchronous operations, all intermediate handlers should be invoked using
the same method as the final handler. This is required to ensure that user-defined objects are not accessed in a way that may violate
the guarantees. This hooking function ensures that the invoked method used for the final handler is accessible at each intermediate
step.

Implement asio_handler_invoke for your own handlers to specify a custom invocation strategy.

This default implementation is simply:

140

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

function();

Example

class my_handler;

template <typename Function>
void asio_handler_invoke(Function function, my_handler* context)
{
 context->strand_.dispatch(function);
}

async_read
Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,

const MutableBufferSequence & buffers,
 ReadHandler handler);

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 ReadHandler handler);

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,
 basic_streambuf< Allocator > & b,
 ReadHandler handler);

template<
typename AsyncReadStream,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 ReadHandler handler);

async_read (1 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

141

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,

const MutableBufferSequence & buffers,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the stream. Although the buffers object may be copied as necessary, ownership of the underlying
memory blocks is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes copied into the
// buffers. If an error occurred,
// this will be the number of
// bytes successfully transferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read(s, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

142

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::async_read(
 s, buffers,
 boost::asio::transfer_all(),
 handler);

async_read (2 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the stream. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guar-
antee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's async_read_some function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

143

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes copied into the
// buffers. If an error occurred,
// this will be the number of

// bytes successfully transferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read(s,
 boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32),
 handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

async_read (3 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,
 basic_streambuf< Allocator > & b,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which
must guarantee that it remains valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

144

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes copied into the
// buffers. If an error occurred,
// this will be the number of
// bytes successfully transferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

This overload is equivalent to calling:

boost::asio::async_read(
 s, b,
 boost::asio::transfer_all(),
 handler);

async_read (4 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void async_read(
 AsyncReadStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

145

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest async_read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's async_read_some function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes copied into the
// buffers. If an error occurred,
// this will be the number of

// bytes successfully transferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

async_read_at
Start an asynchronous operation to read a certain amount of data at the specified offset.

146

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 ReadHandler handler);

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 ReadHandler handler);

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 ReadHandler handler);

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 ReadHandler handler);

async_read_at (1 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

147

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the device. Although the buffers object may be copied as necessary, ownership of the underlying
memory blocks is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read_at(d, 42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::async_read_at(
 d, 42, buffers,
 boost::asio::transfer_all(),
 handler);

async_read_at (2 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

148

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessRe-
adDevice concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the device. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guar-
antee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's async_read_some_at
function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

149

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read_at(d, 42,
 boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32),
 handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

async_read_at (3 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which
must guarantee that it remains valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

150

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

This overload is equivalent to calling:

boost::asio::async_read_at(
 d, 42, b,
 boost::asio::transfer_all(),
 handler);

async_read_at (4 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void async_read_at(
 AsyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's async_read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessRe-
adDevice concept.

offset The offset at which the data will be read.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

151

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest async_read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's async_read_some_at
function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

async_read_until
Start an asynchronous operation to read data into a streambuf until it contains a delimiter, matches a regular expression, or a function
object indicates a match.

152

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

char delim,
 ReadHandler handler);

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const std::string & delim,
 ReadHandler handler);

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const boost::regex & expr,
 ReadHandler handler);

template<
typename AsyncReadStream,
typename Allocator,
typename MatchCondition,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,
 MatchCondition match_condition,
 ReadHandler handler,

typename boost::enable_if< is_match_condition< MatchCondition > >::type * = 0);

async_read_until (1 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until it contains a specified delimiter.

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

char delim,
 ReadHandler handler);

This function is used to asynchronously read data into the specified streambuf until the streambuf's get area contains the specified
delimiter. The function call always returns immediately. The asynchronous operation will continue until one of the following conditions
is true:

• The get area of the streambuf contains the specified delimiter.

153

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function. If the streambuf's get area
already contains the delimiter, the asynchronous operation completes immediately.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which must
guarantee that it remains valid until the handler is called.

delim The delimiter character.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area up to and including the delimiter.
// 0 if an error occurred.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond the delimiter. An application will
typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

Example

To asynchronously read data into a streambuf until a newline is encountered:

boost::asio::streambuf b;
...
void handler(const boost::system::error_code& e, std::size_t size)
{
if (!e)
{

 std::istream is(&b);
 std::string line;
 std::getline(is, line);

...
}

}
...
boost::asio::async_read_until(s, b, '\n', handler);

async_read_until (2 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until it contains a specified delimiter.

154

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const std::string & delim,
 ReadHandler handler);

This function is used to asynchronously read data into the specified streambuf until the streambuf's get area contains the specified
delimiter. The function call always returns immediately. The asynchronous operation will continue until one of the following conditions
is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function. If the streambuf's get area
already contains the delimiter, the asynchronous operation completes immediately.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which must
guarantee that it remains valid until the handler is called.

delim The delimiter string.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area up to and including the delimiter.
// 0 if an error occurred.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond the delimiter. An application will
typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

Example

To asynchronously read data into a streambuf until a newline is encountered:

155

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::streambuf b;
...
void handler(const boost::system::error_code& e, std::size_t size)
{
if (!e)
{

 std::istream is(&b);
 std::string line;
 std::getline(is, line);

...
}

}
...
boost::asio::async_read_until(s, b, "\r\n", handler);

async_read_until (3 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until some part of its data matches a regular expression.

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const boost::regex & expr,
 ReadHandler handler);

This function is used to asynchronously read data into the specified streambuf until the streambuf's get area contains some data that
matches a regular expression. The function call always returns immediately. The asynchronous operation will continue until one of
the following conditions is true:

• A substring of the streambuf's get area matches the regular expression.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function. If the streambuf's get area
already contains data that matches the regular expression, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which must
guarantee that it remains valid until the handler is called.

expr The regular expression.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

156

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area up to and including the substring
// that matches the regular. expression.
// 0 if an error occurred.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond that which matched the regular
expression. An application will typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

Example

To asynchronously read data into a streambuf until a CR-LF sequence is encountered:

boost::asio::streambuf b;
...
void handler(const boost::system::error_code& e, std::size_t size)
{
if (!e)
{

 std::istream is(&b);
 std::string line;
 std::getline(is, line);

...
}

}
...
boost::asio::async_read_until(s, b, boost::regex("\r\n"), handler);

async_read_until (4 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until a function object indicates a match.

template<
typename AsyncReadStream,
typename Allocator,
typename MatchCondition,
typename ReadHandler>

void async_read_until(
 AsyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,
 MatchCondition match_condition,
 ReadHandler handler,

typename boost::enable_if< is_match_condition< MatchCondition > >::type * = 0);

This function is used to asynchronously read data into the specified streambuf until a user-defined match condition function object,
when applied to the data contained in the streambuf, indicates a successful match. The function call always returns immediately.
The asynchronous operation will continue until one of the following conditions is true:

• The match condition function object returns a std::pair where the second element evaluates to true.

157

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function. If the match condition
function object already indicates a match, the operation completes immediately.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read.

match_condition The function object to be called to determine whether a match exists. The signature of the function object
must be:

pair<iterator, bool> match_condition(iterator begin, iterator end);

where iterator represents the type:

buffers_iterator<basic_streambuf<Allocator>::const_buffers_type>

The iterator parameters begin and end define the range of bytes to be scanned to determine whether there
is a match. The first member of the return value is an iterator marking one-past-the-end of the bytes that
have been consumed by the match function. This iterator is used to calculate the begin parameter for any
subsequent invocation of the match condition. The second member of the return value is true if a match
has been found, false otherwise.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area that have been fully consumed by the
// match function. O if an error occurred.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond that which matched the function
object. An application will typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

The default implementation of the is_match_condition type trait evaluates to true for function pointers and function objects with
a result_type typedef. It must be specialised for other user-defined function objects.

Examples

To asynchronously read data into a streambuf until whitespace is encountered:

158

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::asio::buffers_iterator<
 boost::asio::streambuf::const_buffers_type> iterator;

std::pair<iterator, bool>
match_whitespace(iterator begin, iterator end)
{
 iterator i = begin;
while (i != end)
if (std::isspace(*i++))

return std::make_pair(i, true);
return std::make_pair(i, false);

}
...
void handler(const boost::system::error_code& e, std::size_t size);
...
boost::asio::streambuf b;
boost::asio::async_read_until(s, b, match_whitespace, handler);

To asynchronously read data into a streambuf until a matching character is found:

class match_char
{
public:
explicit match_char(char c) : c_(c) {}

template <typename Iterator>
 std::pair<Iterator, bool> operator()(
 Iterator begin, Iterator end) const
{

 Iterator i = begin;
while (i != end)

if (c_ == *i++)
return std::make_pair(i, true);

return std::make_pair(i, false);
}

private:
char c_;

};

namespace asio {
template <> struct is_match_condition<match_char>
: public boost::true_type {};

} // namespace asio
...
void handler(const boost::system::error_code& e, std::size_t size);
...
boost::asio::streambuf b;
boost::asio::async_read_until(s, b, match_char('a'), handler);

async_write
Start an asynchronous operation to write a certain amount of data to a stream.

159

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,

const ConstBufferSequence & buffers,
 WriteHandler handler);

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 WriteHandler handler);

template<
typename AsyncWriteStream,
typename Allocator,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 WriteHandler handler);

template<
typename AsyncWriteStream,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 WriteHandler handler);

async_write (1 of 4 overloads)

Start an asynchronous operation to write all of the supplied data to a stream.

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,

const ConstBufferSequence & buffers,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function.

160

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written from the
// buffers. If an error occurred,
// this will be less than the sum
// of the buffer sizes.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write(s, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write (2 of 4 overloads)

Start an asynchronous operation to write a certain amount of data to a stream.

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function.

161

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied
as necessary, ownership of the underlying memory blocks is retained by the caller, which must
guarantee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's async_write_some
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written from ↵
the

// buffers. If an error occurred,
// this will be less than the sum
// of the buffer sizes.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write(s,
 boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32),
 handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write (3 of 4 overloads)

Start an asynchronous operation to write all of the supplied data to a stream.

162

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncWriteStream,
typename Allocator,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function.

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained by the caller, which
must guarantee that it remains valid until the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written from the
// buffers. If an error occurred,
// this will be less than the sum
// of the buffer sizes.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

async_write (4 of 4 overloads)

Start an asynchronous operation to write a certain amount of data to a stream.

template<
typename AsyncWriteStream,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void async_write(
 AsyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

163

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function.

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's async_write_some
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written from ↵
the

// buffers. If an error occurred,
// this will be less than the sum
// of the buffer sizes.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

async_write_at
Start an asynchronous operation to write a certain amount of data at the specified offset.

164

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 WriteHandler handler);

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 WriteHandler handler);

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 WriteHandler handler);

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 WriteHandler handler);

async_write_at (1 of 4 overloads)

Start an asynchronous operation to write all of the supplied data at the specified offset.

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

165

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write_at(d, 42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write_at (2 of 4 overloads)

Start an asynchronous operation to write a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

166

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied
as necessary, ownership of the underlying memory blocks is retained by the caller, which must
guarantee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's async_write_some_at
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write_at(d, 42,
 boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32),
 handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

167

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

async_write_at (3 of 4 overloads)

Start an asynchronous operation to write all of the supplied data at the specified offset.

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained by the caller, which
must guarantee that it remains valid until the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

async_write_at (4 of 4 overloads)

Start an asynchronous operation to write a certain amount of data at the specified offset.

168

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void async_write_at(
 AsyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's async_write_some_at
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

169

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.

 std::size_t bytes_transferred
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

basic_datagram_socket
Provides datagram-oriented socket functionality.

170

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename DatagramSocketService = datagram_socket_service<Protocol>>

class basic_datagram_socket :
public basic_socket< Protocol, DatagramSocketService >

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

171

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

172

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Receive some data on a connected socket.receive

173

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_datagram_socket::assign

Assign an existing native socket to the socket.

174

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const protocol_type & protocol,
const native_type & native_socket);

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_datagram_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_type & native_socket);

basic_datagram_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_datagram_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

void async_connect(
const endpoint_type & peer_endpoint,

 ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

175

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_datagram_socket::async_receive

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 ReadHandler handler);

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 ReadHandler handler);

basic_datagram_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously receive data from the datagram socket. The function call always returns immediately.

176

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected datagram socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_datagram_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 ReadHandler handler);

This function is used to asynchronously receive data from the datagram socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

177

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected datagram socket.

basic_datagram_socket::async_receive_from

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 ReadHandler handler);

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 ReadHandler handler);

basic_datagram_socket::async_receive_from (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 ReadHandler handler);

This function is used to asynchronously receive a datagram. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

178

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive_from(
 boost::asio::buffer(data, size), 0, sender_endpoint, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_datagram_socket::async_receive_from (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 ReadHandler handler);

This function is used to asynchronously receive a datagram. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

179

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

basic_datagram_socket::async_send

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 WriteHandler handler);

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 WriteHandler handler);

basic_datagram_socket::async_send (1 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

180

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
datagram socket.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::async_send (2 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 WriteHandler handler);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

181

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
datagram socket.

basic_datagram_socket::async_send_to

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 WriteHandler handler);

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 WriteHandler handler);

basic_datagram_socket::async_send_to (1 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 WriteHandler handler);

This function is used to asynchronously send a datagram to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

182

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To send a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint destination(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_send_to(
 boost::asio::buffer(data, size), destination, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::async_send_to (2 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 WriteHandler handler);

This function is used to asynchronously send a datagram to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

flags Flags specifying how the send call is to be made.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_datagram_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

183

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool at_mark() const;

bool at_mark(
 boost::system::error_code & ec) const;

basic_datagram_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
 boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_datagram_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;

std::size_t available(
 boost::system::error_code & ec) const;

basic_datagram_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

184

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
 boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_datagram_socket::basic_datagram_socket

Construct a basic_datagram_socket without opening it.

basic_datagram_socket(
 boost::asio::io_service & io_service);

Construct and open a basic_datagram_socket.

basic_datagram_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

Construct a basic_datagram_socket, opening it and binding it to the given local endpoint.

basic_datagram_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

Construct a basic_datagram_socket on an existing native socket.

185

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

basic_datagram_socket::basic_datagram_socket (1 of 4 overloads)

Construct a basic_datagram_socket without opening it.

basic_datagram_socket(
 boost::asio::io_service & io_service);

This constructor creates a datagram socket without opening it. The open() function must be called before data can be sent or received
on the socket.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

basic_datagram_socket::basic_datagram_socket (2 of 4 overloads)

Construct and open a basic_datagram_socket.

basic_datagram_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

This constructor creates and opens a datagram socket.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::basic_datagram_socket (3 of 4 overloads)

Construct a basic_datagram_socket, opening it and binding it to the given local endpoint.

basic_datagram_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

This constructor creates a datagram socket and automatically opens it bound to the specified endpoint on the local machine. The
protocol used is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

186

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint An endpoint on the local machine to which the datagram socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::basic_datagram_socket (4 of 4 overloads)

Construct a basic_datagram_socket on an existing native socket.

basic_datagram_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

This constructor creates a datagram socket object to hold an existing native socket.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

basic_datagram_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

187

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345));

basic_datagram_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

188

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

basic_datagram_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_datagram_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_datagram_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

189

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_datagram_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_datagram_socket::close

Close the socket.

190

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

basic_datagram_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_datagram_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_datagram_socket::connect

Connect the socket to the specified endpoint.

191

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void connect(
const endpoint_type & peer_endpoint);

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

basic_datagram_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_datagram_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

192

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

basic_datagram_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

193

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

basic_datagram_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

basic_datagram_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

basic_datagram_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

194

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_datagram_socket::get_option

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

basic_datagram_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.get();

basic_datagram_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

195

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_datagram_socket::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_datagram_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_datagram_socket::io_control

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

basic_datagram_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

196

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_datagram_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

197

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_datagram_socket::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_datagram_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_datagram_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

198

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_datagram_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

basic_datagram_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

basic_datagram_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

199

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_datagram_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

basic_datagram_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

200

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_datagram_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_datagram_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

201

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket< Protocol, DatagramSocketService > lowest_layer_type;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

202

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

basic_socket

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

203

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_datagram_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_datagram_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_datagram_socket::message_flags

Inherited from socket_base.

204

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

basic_datagram_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

basic_datagram_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_datagram_socket::native

Inherited from basic_socket.

Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_datagram_socket::native_type

The native representation of a socket.

typedef DatagramSocketService::native_type native_type;

basic_datagram_socket::non_blocking_io

Inherited from socket_base.

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

205

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

basic_datagram_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

basic_datagram_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_datagram_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

206

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

basic_datagram_socket::receive

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags);

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_datagram_socket::receive (1 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

This function is used to receive data on the datagram socket. The function call will block until data has been received successfully
or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

207

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
datagram socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size));

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_datagram_socket::receive (2 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags);

This function is used to receive data on the datagram socket. The function call will block until data has been received successfully
or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
datagram socket.

basic_datagram_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

208

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to receive data on the datagram socket. The function call will block until data has been received successfully
or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
datagram socket.

basic_datagram_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_datagram_socket::receive_from

Receive a datagram with the endpoint of the sender.

209

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint);

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags);

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_datagram_socket::receive_from (1 of 3 overloads)

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint);

This function is used to receive a datagram. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Example

To receive into a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint sender_endpoint;
socket.receive_from(
 boost::asio::buffer(data, size), sender_endpoint);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

210

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::receive_from (2 of 3 overloads)

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags);

This function is used to receive a datagram. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::receive_from (3 of 3 overloads)

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to receive a datagram. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

basic_datagram_socket::receive_low_watermark

Inherited from socket_base.

211

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_datagram_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

basic_datagram_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

212

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_datagram_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

213

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

basic_datagram_socket::send

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags);

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_datagram_socket::send (1 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected datagram
socket.

214

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size));

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::send (2 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected datagram
socket.

basic_datagram_socket::send (3 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

215

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected datagram
socket.

basic_datagram_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_datagram_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

216

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_datagram_socket::send_to

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags);

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_datagram_socket::send_to (1 of 3 overloads)

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

This function is used to send a datagram to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

217

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Example

To send a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint destination(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.send_to(boost::asio::buffer(data, size), destination);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::send_to (2 of 3 overloads)

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags);

This function is used to send a datagram to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::send_to (3 of 3 overloads)

Send a datagram to the specified endpoint.

218

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to send a datagram to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

basic_datagram_socket::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_datagram_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef DatagramSocketService service_type;

basic_datagram_socket::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

basic_datagram_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

219

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_datagram_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::shutdown

Disable sends or receives on the socket.

220

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void shutdown(
 shutdown_type what);

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

basic_datagram_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_datagram_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

221

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_deadline_timer
Provides waitable timer functionality.

template<
typename Time,
typename TimeTraits = boost::asio::time_traits<Time>,
typename TimerService = deadline_timer_service<Time, TimeTraits>>

class basic_deadline_timer :
public basic_io_object< TimerService >

Types

DescriptionName

The duration type.duration_type

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time type.time_type

The time traits type.traits_type

222

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_deadline_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Perform a blocking wait on the timer.wait

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_deadline_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

Most applications will use the boost::asio::deadline_timer typedef.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait:

223

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// Construct a timer without setting an expiry time.
boost::asio::deadline_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(boost::posix_time::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait:

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::deadline_timer timer(io_service,
 boost::posix_time::time_from_string("2005-12-07 23:59:59.000"));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active deadline_timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.

 my_timer.async_wait(on_timeout);
}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_deadline_timer::expires_from_now() function cancels any pending asynchronous waits, and returns the
number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has already been
executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::operation_aborted.

224

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::async_wait

Start an asynchronous wait on the timer.

template<
typename WaitHandler>

void async_wait(
 WaitHandler handler);

This function may be used to initiate an asynchronous wait against the timer. It always returns immediately.

For each call to async_wait(), the supplied handler will be called exactly once. The handler will be called when:

• The timer has expired.

• The timer was cancelled, in which case the handler is passed the error code boost::asio::error::operation_aborted.

Parameters

handler The handler to be called when the timer expires. Copies will be made of the handler as required. The function signature
of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

basic_deadline_timer::basic_deadline_timer

Constructor.

basic_deadline_timer(
 boost::asio::io_service & io_service);

Constructor to set a particular expiry time as an absolute time.

basic_deadline_timer(
 boost::asio::io_service & io_service,

const time_type & expiry_time);

Constructor to set a particular expiry time relative to now.

basic_deadline_timer(
 boost::asio::io_service & io_service,

const duration_type & expiry_time);

basic_deadline_timer::basic_deadline_timer (1 of 3 overloads)

Constructor.

225

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer(
 boost::asio::io_service & io_service);

This constructor creates a timer without setting an expiry time. The expires_at() or expires_from_now() functions must be called to
set an expiry time before the timer can be waited on.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed on
the timer.

basic_deadline_timer::basic_deadline_timer (2 of 3 overloads)

Constructor to set a particular expiry time as an absolute time.

basic_deadline_timer(
 boost::asio::io_service & io_service,

const time_type & expiry_time);

This constructor creates a timer and sets the expiry time.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed on
the timer.

expiry_time The expiry time to be used for the timer, expressed as an absolute time.

basic_deadline_timer::basic_deadline_timer (3 of 3 overloads)

Constructor to set a particular expiry time relative to now.

basic_deadline_timer(
 boost::asio::io_service & io_service,

const duration_type & expiry_time);

This constructor creates a timer and sets the expiry time.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed on
the timer.

expiry_time The expiry time to be used for the timer, relative to now.

basic_deadline_timer::cancel

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel();

std::size_t cancel(
 boost::system::error_code & ec);

basic_deadline_timer::cancel (1 of 2 overloads)

Cancel any asynchronous operations that are waiting on the timer.

226

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t cancel();

This function forces the completion of any pending asynchronous wait operations against the timer. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

basic_deadline_timer::cancel (2 of 2 overloads)

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel(
 boost::system::error_code & ec);

This function forces the completion of any pending asynchronous wait operations against the timer. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

basic_deadline_timer::duration_type

The duration type.

typedef traits_type::duration_type duration_type;

basic_deadline_timer::expires_at

Get the timer's expiry time as an absolute time.

time_type expires_at() const;

Set the timer's expiry time as an absolute time.

227

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t expires_at(
const time_type & expiry_time);

std::size_t expires_at(
const time_type & expiry_time,

 boost::system::error_code & ec);

basic_deadline_timer::expires_at (1 of 3 overloads)

Get the timer's expiry time as an absolute time.

time_type expires_at() const;

This function may be used to obtain the timer's current expiry time. Whether the timer has expired or not does not affect this value.

basic_deadline_timer::expires_at (2 of 3 overloads)

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_type & expiry_time);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

basic_deadline_timer::expires_at (3 of 3 overloads)

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_type & expiry_time,

 boost::system::error_code & ec);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

228

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::expires_from_now

Get the timer's expiry time relative to now.

duration_type expires_from_now() const;

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration_type & expiry_time);

std::size_t expires_from_now(
const duration_type & expiry_time,

 boost::system::error_code & ec);

basic_deadline_timer::expires_from_now (1 of 3 overloads)

Get the timer's expiry time relative to now.

duration_type expires_from_now() const;

This function may be used to obtain the timer's current expiry time. Whether the timer has expired or not does not affect this value.

basic_deadline_timer::expires_from_now (2 of 3 overloads)

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration_type & expiry_time);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

basic_deadline_timer::expires_from_now (3 of 3 overloads)

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration_type & expiry_time,

 boost::system::error_code & ec);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

229

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

expiry_time The expiry time to be used for the timer.

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

basic_deadline_timer::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_deadline_timer::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_deadline_timer::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_deadline_timer::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_deadline_timer::service

Inherited from basic_io_object.

230

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The service associated with the I/O object.

service_type & service;

basic_deadline_timer::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef TimerService service_type;

basic_deadline_timer::time_type

The time type.

typedef traits_type::time_type time_type;

basic_deadline_timer::traits_type

The time traits type.

typedef TimeTraits traits_type;

basic_deadline_timer::wait

Perform a blocking wait on the timer.

void wait();

void wait(
 boost::system::error_code & ec);

basic_deadline_timer::wait (1 of 2 overloads)

Perform a blocking wait on the timer.

void wait();

This function is used to wait for the timer to expire. This function blocks and does not return until the timer has expired.

Exceptions

boost::system::system_error Thrown on failure.

basic_deadline_timer::wait (2 of 2 overloads)

Perform a blocking wait on the timer.

void wait(
 boost::system::error_code & ec);

This function is used to wait for the timer to expire. This function blocks and does not return until the timer has expired.

231

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any.

basic_io_object
Base class for all I/O objects.

template<
typename IoObjectService>

class basic_io_object :
 noncopyable

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Protected Member Functions

DescriptionName

Construct a basic_io_object.basic_io_object

Protected destructor to prevent deletion through this type.~basic_io_object

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

basic_io_object::basic_io_object

Construct a basic_io_object.

232

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_io_object(
 boost::asio::io_service & io_service);

Performs:

service.construct(implementation);

basic_io_object::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_io_object::implementation

The underlying implementation of the I/O object.

implementation_type implementation;

basic_io_object::implementation_type

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_io_object::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_io_object::service

The service associated with the I/O object.

service_type & service;

basic_io_object::service_type

The type of the service that will be used to provide I/O operations.

233

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef IoObjectService service_type;

basic_io_object::~basic_io_object

Protected destructor to prevent deletion through this type.

~basic_io_object();

Performs:

service.destroy(implementation);

basic_raw_socket
Provides raw-oriented socket functionality.

234

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename RawSocketService = raw_socket_service<Protocol>>

class basic_raw_socket :
public basic_socket< Protocol, RawSocketService >

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

235

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

236

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_raw_socket without opening it.basic_raw_socket

Construct and open a basic_raw_socket.

Construct a basic_raw_socket, opening it and binding it to the
given local endpoint.

Construct a basic_raw_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Receive some data on a connected socket.receive

237

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send raw data to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_raw_socket class template provides asynchronous and blocking raw-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_raw_socket::assign

Assign an existing native socket to the socket.

238

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const protocol_type & protocol,
const native_type & native_socket);

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_raw_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_type & native_socket);

basic_raw_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_raw_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

void async_connect(
const endpoint_type & peer_endpoint,

 ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

239

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_raw_socket::async_receive

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 ReadHandler handler);

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 ReadHandler handler);

basic_raw_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously receive data from the raw socket. The function call always returns immediately.

240

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected raw socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_raw_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 ReadHandler handler);

This function is used to asynchronously receive data from the raw socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

241

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected raw socket.

basic_raw_socket::async_receive_from

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 ReadHandler handler);

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 ReadHandler handler);

basic_raw_socket::async_receive_from (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 ReadHandler handler);

This function is used to asynchronously receive raw data. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

242

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive_from(
 boost::asio::buffer(data, size), 0, sender_endpoint, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_raw_socket::async_receive_from (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 ReadHandler handler);

This function is used to asynchronously receive raw data. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

243

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

basic_raw_socket::async_send

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 WriteHandler handler);

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 WriteHandler handler);

basic_raw_socket::async_send (1 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

244

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
raw socket.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::async_send (2 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 WriteHandler handler);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

245

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
raw socket.

basic_raw_socket::async_send_to

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 WriteHandler handler);

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 WriteHandler handler);

basic_raw_socket::async_send_to (1 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 WriteHandler handler);

This function is used to asynchronously send raw data to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

246

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To send a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint destination(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_send_to(
 boost::asio::buffer(data, size), destination, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::async_send_to (2 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 WriteHandler handler);

This function is used to asynchronously send raw data to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

flags Flags specifying how the send call is to be made.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_raw_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

247

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool at_mark() const;

bool at_mark(
 boost::system::error_code & ec) const;

basic_raw_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
 boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_raw_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;

std::size_t available(
 boost::system::error_code & ec) const;

basic_raw_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

248

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
 boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_raw_socket::basic_raw_socket

Construct a basic_raw_socket without opening it.

basic_raw_socket(
 boost::asio::io_service & io_service);

Construct and open a basic_raw_socket.

basic_raw_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

Construct a basic_raw_socket, opening it and binding it to the given local endpoint.

basic_raw_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

Construct a basic_raw_socket on an existing native socket.

249

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

basic_raw_socket::basic_raw_socket (1 of 4 overloads)

Construct a basic_raw_socket without opening it.

basic_raw_socket(
 boost::asio::io_service & io_service);

This constructor creates a raw socket without opening it. The open() function must be called before data can be sent or received on
the socket.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

basic_raw_socket::basic_raw_socket (2 of 4 overloads)

Construct and open a basic_raw_socket.

basic_raw_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

This constructor creates and opens a raw socket.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::basic_raw_socket (3 of 4 overloads)

Construct a basic_raw_socket, opening it and binding it to the given local endpoint.

basic_raw_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

This constructor creates a raw socket and automatically opens it bound to the specified endpoint on the local machine. The protocol
used is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

250

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint An endpoint on the local machine to which the raw socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::basic_raw_socket (4 of 4 overloads)

Construct a basic_raw_socket on an existing native socket.

basic_raw_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

This constructor creates a raw socket object to hold an existing native socket.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

basic_raw_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

251

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345));

basic_raw_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

252

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

basic_raw_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_raw_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_raw_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

253

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_raw_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_raw_socket::close

Close the socket.

254

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

basic_raw_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_raw_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_raw_socket::connect

Connect the socket to the specified endpoint.

255

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void connect(
const endpoint_type & peer_endpoint);

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

basic_raw_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_raw_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

256

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

basic_raw_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

257

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

basic_raw_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

basic_raw_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

basic_raw_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

258

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_raw_socket::get_option

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

basic_raw_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.get();

basic_raw_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

259

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_raw_socket::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_raw_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_raw_socket::io_control

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

basic_raw_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

260

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_raw_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

261

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_raw_socket::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_raw_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_raw_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

262

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_raw_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

basic_raw_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

basic_raw_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

263

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_raw_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

basic_raw_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

264

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_raw_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_raw_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

265

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket< Protocol, RawSocketService > lowest_layer_type;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

266

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

basic_socket

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

267

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_raw_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_raw_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_raw_socket::message_flags

Inherited from socket_base.

268

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

basic_raw_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

basic_raw_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_raw_socket::native

Inherited from basic_socket.

Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_raw_socket::native_type

The native representation of a socket.

typedef RawSocketService::native_type native_type;

basic_raw_socket::non_blocking_io

Inherited from socket_base.

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

269

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

basic_raw_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

basic_raw_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_raw_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

270

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

basic_raw_socket::receive

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags);

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_raw_socket::receive (1 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

This function is used to receive data on the raw socket. The function call will block until data has been received successfully or an
error occurs.

Parameters

buffers One or more buffers into which the data will be received.

271

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
raw socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size));

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_raw_socket::receive (2 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags);

This function is used to receive data on the raw socket. The function call will block until data has been received successfully or an
error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
raw socket.

basic_raw_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

272

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to receive data on the raw socket. The function call will block until data has been received successfully or an
error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
raw socket.

basic_raw_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_raw_socket::receive_from

Receive raw data with the endpoint of the sender.

273

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint);

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags);

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_raw_socket::receive_from (1 of 3 overloads)

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint);

This function is used to receive raw data. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Example

To receive into a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint sender_endpoint;
socket.receive_from(
 boost::asio::buffer(data, size), sender_endpoint);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

274

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::receive_from (2 of 3 overloads)

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags);

This function is used to receive raw data. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::receive_from (3 of 3 overloads)

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,

 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to receive raw data. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

basic_raw_socket::receive_low_watermark

Inherited from socket_base.

275

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_raw_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

basic_raw_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

276

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_raw_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

277

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

basic_raw_socket::send

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags);

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_raw_socket::send (1 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected raw socket.

Example

To send a single data buffer use the buffer function as follows:

278

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.send(boost::asio::buffer(data, size));

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::send (2 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected raw socket.

basic_raw_socket::send (3 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

279

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes sent.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected raw socket.

basic_raw_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_raw_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

280

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_raw_socket::send_to

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags);

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_raw_socket::send_to (1 of 3 overloads)

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

This function is used to send raw data to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

281

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To send a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint destination(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.send_to(boost::asio::buffer(data, size), destination);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::send_to (2 of 3 overloads)

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags);

This function is used to send raw data to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::send_to (3 of 3 overloads)

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to send raw data to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

282

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

basic_raw_socket::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_raw_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef RawSocketService service_type;

basic_raw_socket::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

basic_raw_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

283

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_raw_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

basic_raw_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

284

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void shutdown(
 shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_raw_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

285

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_serial_port
Provides serial port functionality.

template<
typename SerialPortService = serial_port_service>

class basic_serial_port :
public basic_io_object< SerialPortService >,
public serial_port_base

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_serial_port is always the lowest layer.lowest_layer_type

The native representation of a serial port.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

286

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native serial port to the serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_serial_port without opening it.

Construct and open a basic_serial_port.

Construct a basic_serial_port on an existing native serial port.

basic_serial_port

Cancel all asynchronous operations associated with the serial
port.

cancel

Close the serial port.close

Get the io_service associated with the object.get_io_service

Get an option from the serial port.get_option

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the serial port is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native serial port representation.native

Open the serial port using the specified device name.open

Read some data from the serial port.read_some

Send a break sequence to the serial port.send_break

Set an option on the serial port.set_option

Write some data to the serial port.write_some

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_serial_port class template provides functionality that is common to all serial ports.

287

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_serial_port::assign

Assign an existing native serial port to the serial port.

void assign(
const native_type & native_serial_port);

boost::system::error_code assign(
const native_type & native_serial_port,

 boost::system::error_code & ec);

basic_serial_port::assign (1 of 2 overloads)

Assign an existing native serial port to the serial port.

void assign(
const native_type & native_serial_port);

basic_serial_port::assign (2 of 2 overloads)

Assign an existing native serial port to the serial port.

boost::system::error_code assign(
const native_type & native_serial_port,

 boost::system::error_code & ec);

basic_serial_port::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously read data from the serial port. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

288

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes read.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

serial_port.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_serial_port::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to asynchronously write data to the serial port. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the serial port. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

289

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To write a single data buffer use the buffer function as follows:

serial_port.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_serial_port::basic_serial_port

Construct a basic_serial_port without opening it.

basic_serial_port(
 boost::asio::io_service & io_service);

Construct and open a basic_serial_port.

basic_serial_port(
 boost::asio::io_service & io_service,

const char * device);

basic_serial_port(
 boost::asio::io_service & io_service,

const std::string & device);

Construct a basic_serial_port on an existing native serial port.

basic_serial_port(
 boost::asio::io_service & io_service,

const native_type & native_serial_port);

basic_serial_port::basic_serial_port (1 of 4 overloads)

Construct a basic_serial_port without opening it.

basic_serial_port(
 boost::asio::io_service & io_service);

This constructor creates a serial port without opening it.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations performed
on the port.

basic_serial_port::basic_serial_port (2 of 4 overloads)

Construct and open a basic_serial_port.

basic_serial_port(
 boost::asio::io_service & io_service,

const char * device);

This constructor creates and opens a serial port for the specified device name.

290

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations performed
on the port.

device The platform-specific device name for this serial port.

basic_serial_port::basic_serial_port (3 of 4 overloads)

Construct and open a basic_serial_port.

basic_serial_port(
 boost::asio::io_service & io_service,

const std::string & device);

This constructor creates and opens a serial port for the specified device name.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations performed
on the port.

device The platform-specific device name for this serial port.

basic_serial_port::basic_serial_port (4 of 4 overloads)

Construct a basic_serial_port on an existing native serial port.

basic_serial_port(
 boost::asio::io_service & io_service,

const native_type & native_serial_port);

This constructor creates a serial port object to hold an existing native serial port.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations
performed on the port.

native_serial_port A native serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::cancel

Cancel all asynchronous operations associated with the serial port.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_serial_port::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the serial port.

291

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the serial port.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

basic_serial_port::close

Close the serial port.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

basic_serial_port::close (1 of 2 overloads)

Close the serial port.

void close();

This function is used to close the serial port. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::close (2 of 2 overloads)

Close the serial port.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the serial port. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

292

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any.

basic_serial_port::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_serial_port::get_option

Get an option from the serial port.

template<
typename GettableSerialPortOption>

void get_option(
 GettableSerialPortOption & option);

template<
typename GettableSerialPortOption>

boost::system::error_code get_option(
 GettableSerialPortOption & option,
 boost::system::error_code & ec);

basic_serial_port::get_option (1 of 2 overloads)

Get an option from the serial port.

template<
typename GettableSerialPortOption>

void get_option(
 GettableSerialPortOption & option);

This function is used to get the current value of an option on the serial port.

Parameters

option The option value to be obtained from the serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::get_option (2 of 2 overloads)

Get an option from the serial port.

293

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSerialPortOption>

boost::system::error_code get_option(
 GettableSerialPortOption & option,
 boost::system::error_code & ec);

This function is used to get the current value of an option on the serial port.

Parameters

option The option value to be obtained from the serial port.

ec Set to indicate what error occured, if any.

basic_serial_port::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_serial_port::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_serial_port::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_serial_port::is_open

Determine whether the serial port is open.

bool is_open() const;

basic_serial_port::lowest_layer

Get a reference to the lowest layer.

294

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

basic_serial_port::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_serial_port cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_serial_port::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_serial_port cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_serial_port::lowest_layer_type

A basic_serial_port is always the lowest layer.

typedef basic_serial_port< SerialPortService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_serial_port is always the lowest layer.lowest_layer_type

The native representation of a serial port.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

295

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native serial port to the serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_serial_port without opening it.

Construct and open a basic_serial_port.

Construct a basic_serial_port on an existing native serial port.

basic_serial_port

Cancel all asynchronous operations associated with the serial
port.

cancel

Close the serial port.close

Get the io_service associated with the object.get_io_service

Get an option from the serial port.get_option

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the serial port is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native serial port representation.native

Open the serial port using the specified device name.open

Read some data from the serial port.read_some

Send a break sequence to the serial port.send_break

Set an option on the serial port.set_option

Write some data to the serial port.write_some

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_serial_port class template provides functionality that is common to all serial ports.

296

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_serial_port::native

Get the native serial port representation.

native_type native();

This function may be used to obtain the underlying representation of the serial port. This is intended to allow access to native serial
port functionality that is not otherwise provided.

basic_serial_port::native_type

The native representation of a serial port.

typedef SerialPortService::native_type native_type;

basic_serial_port::open

Open the serial port using the specified device name.

void open(
const std::string & device);

boost::system::error_code open(
const std::string & device,

 boost::system::error_code & ec);

basic_serial_port::open (1 of 2 overloads)

Open the serial port using the specified device name.

void open(
const std::string & device);

This function opens the serial port for the specified device name.

Parameters

device The platform-specific device name.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::open (2 of 2 overloads)

Open the serial port using the specified device name.

297

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
const std::string & device,

 boost::system::error_code & ec);

This function opens the serial port using the given platform-specific device name.

Parameters

device The platform-specific device name.

ec Set the indicate what error occurred, if any.

basic_serial_port::read_some

Read some data from the serial port.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

basic_serial_port::read_some (1 of 2 overloads)

Read some data from the serial port.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the serial port. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

298

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To read into a single data buffer use the buffer function as follows:

serial_port.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_serial_port::read_some (2 of 2 overloads)

Read some data from the serial port.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to read data from the serial port. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

basic_serial_port::send_break

Send a break sequence to the serial port.

void send_break();

boost::system::error_code send_break(
 boost::system::error_code & ec);

basic_serial_port::send_break (1 of 2 overloads)

Send a break sequence to the serial port.

void send_break();

This function causes a break sequence of platform-specific duration to be sent out the serial port.

Exceptions

boost::system::system_error Thrown on failure.

299

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_serial_port::send_break (2 of 2 overloads)

Send a break sequence to the serial port.

boost::system::error_code send_break(
 boost::system::error_code & ec);

This function causes a break sequence of platform-specific duration to be sent out the serial port.

Parameters

ec Set to indicate what error occurred, if any.

basic_serial_port::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_serial_port::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef SerialPortService service_type;

basic_serial_port::set_option

Set an option on the serial port.

template<
typename SettableSerialPortOption>

void set_option(
const SettableSerialPortOption & option);

template<
typename SettableSerialPortOption>

boost::system::error_code set_option(
const SettableSerialPortOption & option,

 boost::system::error_code & ec);

basic_serial_port::set_option (1 of 2 overloads)

Set an option on the serial port.

template<
typename SettableSerialPortOption>

void set_option(
const SettableSerialPortOption & option);

This function is used to set an option on the serial port.

300

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

option The option value to be set on the serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::set_option (2 of 2 overloads)

Set an option on the serial port.

template<
typename SettableSerialPortOption>

boost::system::error_code set_option(
const SettableSerialPortOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the serial port.

Parameters

option The option value to be set on the serial port.

ec Set to indicate what error occurred, if any.

basic_serial_port::write_some

Write some data to the serial port.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

basic_serial_port::write_some (1 of 2 overloads)

Write some data to the serial port.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the serial port. The function call will block until one or more bytes of the data has been written
successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the serial port.

301

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

serial_port.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_serial_port::write_some (2 of 2 overloads)

Write some data to the serial port.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to write data to the serial port. The function call will block until one or more bytes of the data has been written
successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the serial port.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

basic_socket
Provides socket functionality.

302

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService>

class basic_socket :
public basic_io_object< SocketService >,
public socket_base

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

303

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

basic_socket

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

304

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_socket::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_type & native_socket);

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_socket::assign (1 of 2 overloads)

Assign an existing native socket to the socket.

305

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const protocol_type & protocol,
const native_type & native_socket);

basic_socket::assign (2 of 2 overloads)

Assign an existing native socket to the socket.

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_socket::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void async_connect(
const endpoint_type & peer_endpoint,

 ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

306

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

bool at_mark(
 boost::system::error_code & ec) const;

basic_socket::at_mark (1 of 2 overloads)

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::at_mark (2 of 2 overloads)

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
 boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

307

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;

std::size_t available(
 boost::system::error_code & ec) const;

basic_socket::available (1 of 2 overloads)

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::available (2 of 2 overloads)

Determine the number of bytes available for reading.

std::size_t available(
 boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_socket::basic_socket

Construct a basic_socket without opening it.

basic_socket(
 boost::asio::io_service & io_service);

Construct and open a basic_socket.

basic_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

Construct a basic_socket, opening it and binding it to the given local endpoint.

308

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

Construct a basic_socket on an existing native socket.

basic_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

basic_socket::basic_socket (1 of 4 overloads)

Construct a basic_socket without opening it.

basic_socket(
 boost::asio::io_service & io_service);

This constructor creates a socket without opening it.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed on
the socket.

basic_socket::basic_socket (2 of 4 overloads)

Construct and open a basic_socket.

basic_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

This constructor creates and opens a socket.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed on
the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::basic_socket (3 of 4 overloads)

Construct a basic_socket, opening it and binding it to the given local endpoint.

basic_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

This constructor creates a socket and automatically opens it bound to the specified endpoint on the local machine. The protocol used
is the protocol associated with the given endpoint.

309

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed on
the socket.

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::basic_socket (4 of 4 overloads)

Construct a basic_socket on an existing native socket.

basic_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

This constructor creates a socket object to hold an existing native socket.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

protocol An object specifying protocol parameters to be used.

native_socket A native socket.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

basic_socket::bind (1 of 2 overloads)

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

310

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345));

basic_socket::bind (2 of 2 overloads)

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

311

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

basic_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_socket::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

312

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket::close

Close the socket.

313

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

basic_socket::close (1 of 2 overloads)

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_socket::close (2 of 2 overloads)

Close the socket.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_socket::connect

Connect the socket to the specified endpoint.

314

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void connect(
const endpoint_type & peer_endpoint);

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

basic_socket::connect (1 of 2 overloads)

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_socket::connect (2 of 2 overloads)

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

315

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

basic_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

316

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

basic_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

basic_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

basic_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

317

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket::get_option

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
 GettableSocketOption & option) const;

template<
typename GettableSocketOption>

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

basic_socket::get_option (1 of 2 overloads)

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
 GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.get();

basic_socket::get_option (2 of 2 overloads)

Get an option from the socket.

318

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSocketOption>

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_socket::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_socket::io_control

Perform an IO control command on the socket.

319

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

void io_control(
 IoControlCommand & command);

template<
typename IoControlCommand>

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

basic_socket::io_control (1 of 2 overloads)

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket::io_control (2 of 2 overloads)

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

320

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_socket::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket::is_open

Determine whether the socket is open.

bool is_open() const;

basic_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

321

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

basic_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

basic_socket::local_endpoint (1 of 2 overloads)

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

322

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_socket::local_endpoint (2 of 2 overloads)

Get the local endpoint of the socket.

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

basic_socket::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers, it
simply returns a reference to itself.

323

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket::lowest_layer_type

A basic_socket is always the lowest layer.

324

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket< Protocol, SocketService > lowest_layer_type;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

325

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

basic_socket

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

326

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_socket::message_flags

Inherited from socket_base.

327

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

basic_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

basic_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_socket::native

Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_socket::native_type

The native representation of a socket.

typedef SocketService::native_type native_type;

basic_socket::non_blocking_io

Inherited from socket_base.

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

328

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

basic_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

basic_socket::open (1 of 2 overloads)

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_socket::open (2 of 2 overloads)

Open the socket using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

329

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

basic_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_socket::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

330

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

basic_socket::remote_endpoint (1 of 2 overloads)

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_socket::remote_endpoint (2 of 2 overloads)

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

331

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

basic_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

332

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_socket::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

333

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef SocketService service_type;

basic_socket::set_option

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

basic_socket::set_option (1 of 2 overloads)

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_socket::set_option (2 of 2 overloads)

Set an option on the socket.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the socket.

334

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

basic_socket::shutdown (1 of 2 overloads)

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

335

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_socket::shutdown (2 of 2 overloads)

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_socket::~basic_socket

Protected destructor to prevent deletion through this type.

336

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

~basic_socket();

basic_socket_acceptor
Provides the ability to accept new connections.

337

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketAcceptorService = socket_acceptor_service<Protocol>>

class basic_socket_acceptor :
public basic_io_object< SocketAcceptorService >,
public socket_base

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of an acceptor.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

338

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Accept a new connection.

Accept a new connection and obtain the endpoint of the peer.

accept

Assigns an existing native acceptor to the acceptor.assign

Start an asynchronous accept.async_accept

Construct an acceptor without opening it.

Construct an open acceptor.

Construct an acceptor opened on the given endpoint.

Construct a basic_socket_acceptor on an existing native acceptor.

basic_socket_acceptor

Bind the acceptor to the given local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close the acceptor.close

Get the io_service associated with the object.get_io_service

Get an option from the acceptor.get_option

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the acceptor is open.is_open

Place the acceptor into the state where it will listen for new
connections.

listen

Get the local endpoint of the acceptor.local_endpoint

Get the native acceptor representation.native

Open the acceptor using the specified protocol.open

Set an option on the acceptor.set_option

339

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket_acceptor class template is used for accepting new socket connections.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Opening a socket acceptor with the SO_REUSEADDR option enabled:

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
acceptor.open(endpoint.protocol());
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen();

basic_socket_acceptor::accept

Accept a new connection.

template<
typename SocketService>

void accept(
 basic_socket< protocol_type, SocketService > & peer);

template<
typename SocketService>

boost::system::error_code accept(
 basic_socket< protocol_type, SocketService > & peer,
 boost::system::error_code & ec);

Accept a new connection and obtain the endpoint of the peer.

340

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SocketService>

void accept(
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type & peer_endpoint);

template<
typename SocketService>

boost::system::error_code accept(
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type & peer_endpoint,
 boost::system::error_code & ec);

basic_socket_acceptor::accept (1 of 4 overloads)

Accept a new connection.

template<
typename SocketService>

void accept(
 basic_socket< protocol_type, SocketService > & peer);

This function is used to accept a new connection from a peer into the given socket. The function call will block until a new connection
has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
acceptor.accept(socket);

basic_socket_acceptor::accept (2 of 4 overloads)

Accept a new connection.

template<
typename SocketService>

boost::system::error_code accept(
 basic_socket< protocol_type, SocketService > & peer,
 boost::system::error_code & ec);

This function is used to accept a new connection from a peer into the given socket. The function call will block until a new connection
has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

ec Set to indicate what error occurred, if any.

341

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::soocket socket(io_service);
boost::system::error_code ec;
acceptor.accept(socket, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::accept (3 of 4 overloads)

Accept a new connection and obtain the endpoint of the peer.

template<
typename SocketService>

void accept(
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type & peer_endpoint);

This function is used to accept a new connection from a peer into the given socket, and additionally provide the endpoint of the remote
peer. The function call will block until a new connection has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

peer_endpoint An endpoint object which will receive the endpoint of the remote peer.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint;
acceptor.accept(socket, endpoint);

basic_socket_acceptor::accept (4 of 4 overloads)

Accept a new connection and obtain the endpoint of the peer.

template<
typename SocketService>

boost::system::error_code accept(
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type & peer_endpoint,
 boost::system::error_code & ec);

This function is used to accept a new connection from a peer into the given socket, and additionally provide the endpoint of the remote
peer. The function call will block until a new connection has been accepted successfully or an error occurs.

342

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

peer The socket into which the new connection will be accepted.

peer_endpoint An endpoint object which will receive the endpoint of the remote peer.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint;
boost::system::error_code ec;
acceptor.accept(socket, endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::assign

Assigns an existing native acceptor to the acceptor.

void assign(
const protocol_type & protocol,
const native_type & native_acceptor);

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_acceptor,

 boost::system::error_code & ec);

basic_socket_acceptor::assign (1 of 2 overloads)

Assigns an existing native acceptor to the acceptor.

void assign(
const protocol_type & protocol,
const native_type & native_acceptor);

basic_socket_acceptor::assign (2 of 2 overloads)

Assigns an existing native acceptor to the acceptor.

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_acceptor,

 boost::system::error_code & ec);

basic_socket_acceptor::async_accept

Start an asynchronous accept.

343

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SocketService,
typename AcceptHandler>

void async_accept(
 basic_socket< protocol_type, SocketService > & peer,
 AcceptHandler handler);

template<
typename SocketService,
typename AcceptHandler>

void async_accept(
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type & peer_endpoint,
 AcceptHandler handler);

basic_socket_acceptor::async_accept (1 of 2 overloads)

Start an asynchronous accept.

template<
typename SocketService,
typename AcceptHandler>

void async_accept(
 basic_socket< protocol_type, SocketService > & peer,
 AcceptHandler handler);

This function is used to asynchronously accept a new connection into a socket. The function call always returns immediately.

Parameters

peer The socket into which the new connection will be accepted. Ownership of the peer object is retained by the caller, which
must guarantee that it is valid until the handler is called.

handler The handler to be called when the accept operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

344

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

void accept_handler(const boost::system::error_code& error)
{
if (!error)
{
// Accept succeeded.

}
}

...

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
acceptor.async_accept(socket, accept_handler);

basic_socket_acceptor::async_accept (2 of 2 overloads)

Start an asynchronous accept.

template<
typename SocketService,
typename AcceptHandler>

void async_accept(
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type & peer_endpoint,
 AcceptHandler handler);

This function is used to asynchronously accept a new connection into a socket, and additionally obtain the endpoint of the remote
peer. The function call always returns immediately.

Parameters

peer The socket into which the new connection will be accepted. Ownership of the peer object is retained by the
caller, which must guarantee that it is valid until the handler is called.

peer_endpoint An endpoint object into which the endpoint of the remote peer will be written. Ownership of the peer_endpoint
object is retained by the caller, which must guarantee that it is valid until the handler is called.

handler The handler to be called when the accept operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_socket_acceptor::basic_socket_acceptor

Construct an acceptor without opening it.

345

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor(
 boost::asio::io_service & io_service);

Construct an open acceptor.

basic_socket_acceptor(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

Construct an acceptor opened on the given endpoint.

basic_socket_acceptor(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint,
bool reuse_addr = true);

Construct a basic_socket_acceptor on an existing native acceptor.

basic_socket_acceptor(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_acceptor);

basic_socket_acceptor::basic_socket_acceptor (1 of 4 overloads)

Construct an acceptor without opening it.

basic_socket_acceptor(
 boost::asio::io_service & io_service);

This constructor creates an acceptor without opening it to listen for new connections. The open() function must be called before the
acceptor can accept new socket connections.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations performed
on the acceptor.

basic_socket_acceptor::basic_socket_acceptor (2 of 4 overloads)

Construct an open acceptor.

basic_socket_acceptor(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

This constructor creates an acceptor and automatically opens it.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations performed
on the acceptor.

protocol An object specifying protocol parameters to be used.

346

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::basic_socket_acceptor (3 of 4 overloads)

Construct an acceptor opened on the given endpoint.

basic_socket_acceptor(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint,
bool reuse_addr = true);

This constructor creates an acceptor and automatically opens it to listen for new connections on the specified endpoint.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations performed
on the acceptor.

endpoint An endpoint on the local machine on which the acceptor will listen for new connections.

reuse_addr Whether the constructor should set the socket option socket_base::reuse_address.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

This constructor is equivalent to the following code:

basic_socket_acceptor<Protocol> acceptor(io_service);
acceptor.open(endpoint.protocol());
if (reuse_addr)
 acceptor.set_option(socket_base::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen(listen_backlog);

basic_socket_acceptor::basic_socket_acceptor (4 of 4 overloads)

Construct a basic_socket_acceptor on an existing native acceptor.

basic_socket_acceptor(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_acceptor);

This constructor creates an acceptor object to hold an existing native acceptor.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations per-
formed on the acceptor.

protocol An object specifying protocol parameters to be used.

native_acceptor A native acceptor.

347

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::bind

Bind the acceptor to the given local endpoint.

void bind(
const endpoint_type & endpoint);

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

basic_socket_acceptor::bind (1 of 2 overloads)

Bind the acceptor to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket acceptor to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket acceptor will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
acceptor.open(boost::asio::ip::tcp::v4());
acceptor.bind(boost::asio::ip::tcp::endpoint(12345));

basic_socket_acceptor::bind (2 of 2 overloads)

Bind the acceptor to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

This function binds the socket acceptor to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket acceptor will be bound.

ec Set to indicate what error occurred, if any.

348

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
acceptor.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
acceptor.bind(boost::asio::ip::tcp::endpoint(12345), ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_acceptor::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

349

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket_acceptor::cancel

Cancel all asynchronous operations associated with the acceptor.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_socket_acceptor::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the acceptor.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the acceptor.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

basic_socket_acceptor::close

Close the acceptor.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

basic_socket_acceptor::close (1 of 2 overloads)

Close the acceptor.

350

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();

This function is used to close the acceptor. Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to again perform socket accept operations.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::close (2 of 2 overloads)

Close the acceptor.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the acceptor. Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to again perform socket accept operations.

Parameters

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::system::error_code ec;
acceptor.close(ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

351

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_acceptor::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_acceptor::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

352

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

basic_socket_acceptor::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

basic_socket_acceptor::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket_acceptor::get_option

Get an option from the acceptor.

template<
typename GettableSocketOption>

void get_option(
 GettableSocketOption & option);

template<
typename GettableSocketOption>

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec);

basic_socket_acceptor::get_option (1 of 2 overloads)

Get an option from the acceptor.

template<
typename GettableSocketOption>

void get_option(
 GettableSocketOption & option);

This function is used to get the current value of an option on the acceptor.

Parameters

option The option value to be obtained from the acceptor.

353

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option;
acceptor.get_option(option);
bool is_set = option.get();

basic_socket_acceptor::get_option (2 of 2 overloads)

Get an option from the acceptor.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec);

This function is used to get the current value of an option on the acceptor.

Parameters

option The option value to be obtained from the acceptor.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option;
boost::system::error_code ec;
acceptor.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_socket_acceptor::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_socket_acceptor::implementation_type

Inherited from basic_io_object.

354

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_socket_acceptor::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket_acceptor::is_open

Determine whether the acceptor is open.

bool is_open() const;

basic_socket_acceptor::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_acceptor::linger

Inherited from socket_base.

355

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

basic_socket_acceptor::listen

Place the acceptor into the state where it will listen for new connections.

void listen(
int backlog = socket_base::max_connections);

boost::system::error_code listen(
int backlog,

 boost::system::error_code & ec);

basic_socket_acceptor::listen (1 of 2 overloads)

Place the acceptor into the state where it will listen for new connections.

void listen(
int backlog = socket_base::max_connections);

This function puts the socket acceptor into the state where it may accept new connections.

Parameters

backlog The maximum length of the queue of pending connections.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::listen (2 of 2 overloads)

Place the acceptor into the state where it will listen for new connections.

356

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code listen(
int backlog,

 boost::system::error_code & ec);

This function puts the socket acceptor into the state where it may accept new connections.

Parameters

backlog The maximum length of the queue of pending connections.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::system::error_code ec;
acceptor.listen(boost::asio::socket_base::max_connections, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::local_endpoint

Get the local endpoint of the acceptor.

endpoint_type local_endpoint() const;

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

basic_socket_acceptor::local_endpoint (1 of 2 overloads)

Get the local endpoint of the acceptor.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the acceptor.

Return Value

An object that represents the local endpoint of the acceptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint();

basic_socket_acceptor::local_endpoint (2 of 2 overloads)

Get the local endpoint of the acceptor.

357

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the acceptor.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the acceptor. Returns a default-constructed endpoint object if an error occurred and
the error handler did not throw an exception.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_socket_acceptor::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_socket_acceptor::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

basic_socket_acceptor::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

358

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const int message_out_of_band = implementation_defined;

basic_socket_acceptor::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_socket_acceptor::native

Get the native acceptor representation.

native_type native();

This function may be used to obtain the underlying representation of the acceptor. This is intended to allow access to native acceptor
functionality that is not otherwise provided.

basic_socket_acceptor::native_type

The native representation of an acceptor.

typedef SocketAcceptorService::native_type native_type;

basic_socket_acceptor::non_blocking_io

Inherited from socket_base.

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

basic_socket_acceptor::open

Open the acceptor using the specified protocol.

359

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void open(
const protocol_type & protocol = protocol_type());

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

basic_socket_acceptor::open (1 of 2 overloads)

Open the acceptor using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket acceptor so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
acceptor.open(boost::asio::ip::tcp::v4());

basic_socket_acceptor::open (2 of 2 overloads)

Open the acceptor using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

This function opens the socket acceptor so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

360

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::system::error_code ec;
acceptor.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::protocol_type

The protocol type.

typedef Protocol protocol_type;

basic_socket_acceptor::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_socket_acceptor::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

361

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_socket_acceptor::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

basic_socket_acceptor::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

362

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_socket_acceptor::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_socket_acceptor::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_socket_acceptor::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

363

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef SocketAcceptorService service_type;

basic_socket_acceptor::set_option

Set an option on the acceptor.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

basic_socket_acceptor::set_option (1 of 2 overloads)

Set an option on the acceptor.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the acceptor.

Parameters

option The new option value to be set on the acceptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option(true);
acceptor.set_option(option);

basic_socket_acceptor::set_option (2 of 2 overloads)

Set an option on the acceptor.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the acceptor.

364

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

option The new option value to be set on the acceptor.

ec Set to indicate what error occurred, if any.

Example

Setting the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option(true);
boost::system::error_code ec;
acceptor.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_socket_iostream
Iostream interface for a socket.

365

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol>>

class basic_socket_iostream

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Return a pointer to the underlying streambuf.rdbuf

basic_socket_iostream::basic_socket_iostream

Construct a basic_socket_iostream without establishing a connection.

basic_socket_iostream();

Establish a connection to an endpoint corresponding to a resolver query.

template<
typename T1,
... ,
typename TN>

basic_socket_iostream(
 T1 t1,

... ,
 TN tn);

basic_socket_iostream::basic_socket_iostream (1 of 2 overloads)

Construct a basic_socket_iostream without establishing a connection.

basic_socket_iostream();

basic_socket_iostream::basic_socket_iostream (2 of 2 overloads)

Establish a connection to an endpoint corresponding to a resolver query.

366

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename T1,
... ,
typename TN>

basic_socket_iostream(
 T1 t1,

... ,
 TN tn);

This constructor automatically establishes a connection based on the supplied resolver query parameters. The arguments are used to
construct a resolver query object.

basic_socket_iostream::close

Close the connection.

void close();

basic_socket_iostream::connect

Establish a connection to an endpoint corresponding to a resolver query.

template<
typename T1,
... ,
typename TN>

void connect(
 T1 t1,

... ,
 TN tn);

This function automatically establishes a connection based on the supplied resolver query parameters. The arguments are used to
construct a resolver query object.

basic_socket_iostream::rdbuf

Return a pointer to the underlying streambuf.

basic_socket_streambuf< Protocol, StreamSocketService > * rdbuf() const;

basic_socket_streambuf
Iostream streambuf for a socket.

367

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol>>

class basic_socket_streambuf :
public basic_socket< Protocol, StreamSocketService >

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

368

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket_streambuf without establishing a
connection.

basic_socket_streambuf

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the connection.

Close the socket.

close

Establish a connection.

Connect the socket to the specified endpoint.

connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Destructor flushes buffered data.~basic_socket_streambuf

369

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

overflow

setbuf

sync

underflow

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

basic_socket_streambuf::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_type & native_socket);

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_socket_streambuf::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

370

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const protocol_type & protocol,
const native_type & native_socket);

basic_socket_streambuf::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_socket_streambuf::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

void async_connect(
const endpoint_type & peer_endpoint,

 ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

371

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_socket_streambuf::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

bool at_mark(
 boost::system::error_code & ec) const;

basic_socket_streambuf::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_streambuf::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
 boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

372

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_socket_streambuf::available

Determine the number of bytes available for reading.

std::size_t available() const;

std::size_t available(
 boost::system::error_code & ec) const;

basic_socket_streambuf::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_streambuf::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
 boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_socket_streambuf::basic_socket_streambuf

Construct a basic_socket_streambuf without establishing a connection.

373

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf();

basic_socket_streambuf::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

basic_socket_streambuf::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345));

basic_socket_streambuf::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

374

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_streambuf::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

375

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket_streambuf::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_socket_streambuf::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket_streambuf::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

376

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket_streambuf::close

Close the connection.

basic_socket_streambuf< Protocol, StreamSocketService > * close();

Close the socket.

boost::system::error_code close(
 boost::system::error_code & ec);

basic_socket_streambuf::close (1 of 2 overloads)

Close the connection.

basic_socket_streambuf< Protocol, StreamSocketService > * close();

Return Value

this if a connection was successfully established, a null pointer otherwise.

basic_socket_streambuf::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

377

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_socket_streambuf::connect

Establish a connection.

basic_socket_streambuf< Protocol, StreamSocketService > * connect(
const endpoint_type & endpoint);

template<
typename T1,
... ,
typename TN>

basic_socket_streambuf< Protocol, StreamSocketService > * connect(
 T1 t1,

... ,
 TN tn);

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

basic_socket_streambuf::connect (1 of 3 overloads)

Establish a connection.

basic_socket_streambuf< Protocol, StreamSocketService > * connect(
const endpoint_type & endpoint);

This function establishes a connection to the specified endpoint.

378

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

this if a connection was successfully established, a null pointer otherwise.

basic_socket_streambuf::connect (2 of 3 overloads)

Establish a connection.

template<
typename T1,
... ,
typename TN>

basic_socket_streambuf< Protocol, StreamSocketService > * connect(
 T1 t1,

... ,
 TN tn);

This function automatically establishes a connection based on the supplied resolver query parameters. The arguments are used to
construct a resolver query object.

Return Value

this if a connection was successfully established, a null pointer otherwise.

basic_socket_streambuf::connect (3 of 3 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

379

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_streambuf::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

380

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_streambuf::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

basic_socket_streambuf::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

basic_socket_streambuf::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

381

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket_streambuf::get_option

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

basic_socket_streambuf::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.get();

basic_socket_streambuf::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

382

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_socket_streambuf::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

basic_socket_streambuf::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_socket_streambuf::io_control

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

basic_socket_streambuf::io_control (1 of 2 overloads)

Inherited from basic_socket.

383

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket_streambuf::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

384

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_socket_streambuf::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket_streambuf::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_socket_streambuf::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

385

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_socket_streambuf::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

basic_socket_streambuf::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

basic_socket_streambuf::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

386

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_socket_streambuf::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

basic_socket_streambuf::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

387

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket_streambuf::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket_streambuf::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

388

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket< Protocol, StreamSocketService > lowest_layer_type;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

389

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

basic_socket

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

390

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_socket_streambuf::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_socket_streambuf::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_socket_streambuf::message_flags

Inherited from socket_base.

391

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

basic_socket_streambuf::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

basic_socket_streambuf::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_socket_streambuf::native

Inherited from basic_socket.

Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_socket_streambuf::native_type

Inherited from basic_socket.

The native representation of a socket.

typedef StreamSocketService::native_type native_type;

basic_socket_streambuf::non_blocking_io

Inherited from socket_base.

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

392

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

basic_socket_streambuf::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

basic_socket_streambuf::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_socket_streambuf::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

393

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::overflow

int_type overflow(
 int_type c);

basic_socket_streambuf::protocol_type

Inherited from basic_socket.

The protocol type.

typedef Protocol protocol_type;

basic_socket_streambuf::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_socket_streambuf::receive_low_watermark

Inherited from socket_base.

394

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_socket_streambuf::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

basic_socket_streambuf::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

395

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_socket_streambuf::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

396

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

basic_socket_streambuf::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_socket_streambuf::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

397

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_socket_streambuf::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_socket_streambuf::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamSocketService service_type;

basic_socket_streambuf::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

basic_socket_streambuf::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

398

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_socket_streambuf::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::setbuf

std::streambuf * setbuf(
 char_type * s,
 std::streamsize n);

basic_socket_streambuf::shutdown

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

basic_socket_streambuf::shutdown (1 of 2 overloads)

Inherited from basic_socket.

399

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_socket_streambuf::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::shutdown_type

Inherited from socket_base.

400

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_socket_streambuf::sync

int sync();

basic_socket_streambuf::underflow

int_type underflow();

basic_socket_streambuf::~basic_socket_streambuf

Destructor flushes buffered data.

virtual ~basic_socket_streambuf();

basic_stream_socket
Provides stream-oriented socket functionality.

401

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol>>

class basic_stream_socket :
public basic_socket< Protocol, StreamSocketService >

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

402

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

403

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Read some data from the socket.read_some

404

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_stream_socket::assign

Assign an existing native socket to the socket.

405

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const protocol_type & protocol,
const native_type & native_socket);

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_stream_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_type & native_socket);

basic_stream_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

boost::system::error_code assign(
const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

basic_stream_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

void async_connect(
const endpoint_type & peer_endpoint,

 ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

406

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_stream_socket::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously read data from the stream socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes read.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

407

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

socket.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::async_receive

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 ReadHandler handler);

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 ReadHandler handler);

basic_stream_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously receive data from the stream socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

408

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the async_read function if you need to
ensure that the requested amount of data is received before the asynchronous operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 ReadHandler handler);

This function is used to asynchronously receive data from the stream socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes received.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

409

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the async_read function if you need to
ensure that the requested amount of data is received before the asynchronous operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), 0, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 WriteHandler handler);

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 WriteHandler handler);

basic_stream_socket::async_send (1 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to asynchronously send data on the stream socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

410

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The send operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::async_send (2 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 WriteHandler handler);

This function is used to asynchronously send data on the stream socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes sent.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

411

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The send operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), 0, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to asynchronously write data to the stream socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

socket.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

412

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

bool at_mark(
 boost::system::error_code & ec) const;

basic_stream_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
 boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_stream_socket::available

Determine the number of bytes available for reading.

413

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t available() const;

std::size_t available(
 boost::system::error_code & ec) const;

basic_stream_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
 boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_stream_socket::basic_stream_socket

Construct a basic_stream_socket without opening it.

basic_stream_socket(
 boost::asio::io_service & io_service);

Construct and open a basic_stream_socket.

basic_stream_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

Construct a basic_stream_socket, opening it and binding it to the given local endpoint.

414

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

Construct a basic_stream_socket on an existing native socket.

basic_stream_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

basic_stream_socket::basic_stream_socket (1 of 4 overloads)

Construct a basic_stream_socket without opening it.

basic_stream_socket(
 boost::asio::io_service & io_service);

This constructor creates a stream socket without opening it. The socket needs to be opened and then connected or accepted before
data can be sent or received on it.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

basic_stream_socket::basic_stream_socket (2 of 4 overloads)

Construct and open a basic_stream_socket.

basic_stream_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol);

This constructor creates and opens a stream socket. The socket needs to be connected or accepted before data can be sent or received
on it.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::basic_stream_socket (3 of 4 overloads)

Construct a basic_stream_socket, opening it and binding it to the given local endpoint.

415

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket(
 boost::asio::io_service & io_service,

const endpoint_type & endpoint);

This constructor creates a stream socket and automatically opens it bound to the specified endpoint on the local machine. The protocol
used is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

endpoint An endpoint on the local machine to which the stream socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::basic_stream_socket (4 of 4 overloads)

Construct a basic_stream_socket on an existing native socket.

basic_stream_socket(
 boost::asio::io_service & io_service,

const protocol_type & protocol,
const native_type & native_socket);

This constructor creates a stream socket object to hold an existing native socket.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

basic_stream_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

416

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345));

basic_stream_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,

 boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

417

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

basic_stream_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_stream_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

basic_stream_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

418

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_stream_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP, Windows Server 2003,
and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the CancelIo function has
two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

419

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_stream_socket::close

Close the socket.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

basic_stream_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_stream_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

420

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_stream_socket::connect

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

basic_stream_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

421

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_stream_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,

 boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(
 boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

422

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

basic_stream_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

basic_stream_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

423

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

basic_stream_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

basic_stream_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_stream_socket::get_option

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

basic_stream_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

void get_option(
 GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

424

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.get();

basic_stream_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

boost::system::error_code get_option(
 GettableSocketOption & option,
 boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_stream_socket::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

425

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

implementation_type implementation;

basic_stream_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

basic_stream_socket::io_control

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

basic_stream_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_stream_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

426

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_stream_socket::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_stream_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_stream_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

427

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_stream_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

basic_stream_socket::local_endpoint

Get the local endpoint of the socket.

428

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint_type local_endpoint() const;

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

basic_stream_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_stream_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

429

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

basic_stream_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_stream_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_stream_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

430

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket< Protocol, StreamSocketService > lowest_layer_type;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

431

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

basic_socket

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native socket representation.native

Open the socket using the specified protocol.open

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

432

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

basic_stream_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_stream_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_stream_socket::message_flags

Inherited from socket_base.

433

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

basic_stream_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

basic_stream_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_stream_socket::native

Inherited from basic_socket.

Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_stream_socket::native_type

The native representation of a socket.

typedef StreamSocketService::native_type native_type;

basic_stream_socket::non_blocking_io

Inherited from socket_base.

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

434

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

basic_stream_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

basic_stream_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_stream_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,

 boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

435

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

basic_stream_socket::read_some

Read some data from the socket.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

basic_stream_socket::read_some (1 of 2 overloads)

Read some data from the socket.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream socket. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

436

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

socket.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::read_some (2 of 2 overloads)

Read some data from the socket.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to read data from the stream socket. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

basic_stream_socket::receive

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags);

Receive some data on a connected socket.

437

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_stream_socket::receive (1 of 3 overloads)

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

This function is used to receive data on the stream socket. The function call will block until one or more bytes of data has been received
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size));

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::receive (2 of 3 overloads)

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags);

This function is used to receive data on the stream socket. The function call will block until one or more bytes of data has been received
successfully, or until an error occurs.

438

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size), 0);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to receive data on the stream socket. The function call will block until one or more bytes of data has been received
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received. Returns 0 if an error occurred.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

439

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_stream_socket::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

440

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_stream_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

basic_stream_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_stream_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
 boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

441

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

basic_stream_socket::send

Send some data on the socket.

442

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags);

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

basic_stream_socket::send (1 of 3 overloads)

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

This function is used to send data on the stream socket. The function call will block until one or more bytes of the data has been sent
successfully, or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size));

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::send (2 of 3 overloads)

Send some data on the socket.

443

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags);

This function is used to send data on the stream socket. The function call will block until one or more bytes of the data has been sent
successfully, or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size), 0);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::send (3 of 3 overloads)

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

This function is used to send data on the stream socket. The function call will block until one or more bytes of the data has been sent
successfully, or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

444

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes sent. Returns 0 if an error occurred.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

basic_stream_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

basic_stream_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

445

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

basic_stream_socket::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

basic_stream_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamSocketService service_type;

basic_stream_socket::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

basic_stream_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

446

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_stream_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

boost::system::error_code set_option(
const SettableSocketOption & option,

 boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
 shutdown_type what);

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

basic_stream_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

447

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void shutdown(
 shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_stream_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 shutdown_type what,
 boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

448

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_stream_socket::write_some

Write some data to the socket.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

basic_stream_socket::write_some (1 of 2 overloads)

Write some data to the socket.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the stream socket. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the socket.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

449

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::write_some (2 of 2 overloads)

Write some data to the socket.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to write data to the stream socket. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the socket.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

basic_streambuf
Automatically resizable buffer class based on std::streambuf.

template<
typename Allocator = std::allocator<char>>

class basic_streambuf :
 noncopyable

Types

DescriptionName

The type used to represent the input sequence as a list of buffers.const_buffers_type

The type used to represent the output sequence as a list of buf-
fers.

mutable_buffers_type

450

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct a basic_streambuf object.basic_streambuf

Move characters from the output sequence to the input sequence.commit

Remove characters from the input sequence.consume

Get a list of buffers that represents the input sequence.data

Get the maximum size of the basic_streambuf.max_size

Get a list of buffers that represents the output sequence, with
the given size.

prepare

Get the size of the input sequence.size

Protected Member Functions

DescriptionName

Override std::streambuf behaviour.overflow

reserve

Override std::streambuf behaviour.underflow

The basic_streambuf class is derived from std::streambuf to associate the streambuf's input and output sequences with one
or more character arrays. These character arrays are internal to the basic_streambuf object, but direct access to the array elements
is provided to permit them to be used efficiently with I/O operations. Characters written to the output sequence of a basic_stre-
ambuf object are appended to the input sequence of the same object.

The basic_streambuf class's public interface is intended to permit the following implementation strategies:

• A single contiguous character array, which is reallocated as necessary to accommodate changes in the size of the character sequence.
This is the implementation approach currently used in Asio.

• A sequence of one or more character arrays, where each array is of the same size. Additional character array objects are appended
to the sequence to accommodate changes in the size of the character sequence.

• A sequence of one or more character arrays of varying sizes. Additional character array objects are appended to the sequence to
accommodate changes in the size of the character sequence.

The constructor for basic_streambuf accepts a size_t argument specifying the maximum of the sum of the sizes of the input sequence
and output sequence. During the lifetime of the basic_streambuf object, the following invariant holds:

size() <= max_size()

Any member function that would, if successful, cause the invariant to be violated shall throw an exception of class
std::length_error.

The constructor for basic_streambuf takes an Allocator argument. A copy of this argument is used for any memory allocation
performed, by the constructor and by all member functions, during the lifetime of each basic_streambuf object.

451

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Writing directly from an streambuf to a socket:

boost::asio::streambuf b;
std::ostream os(&b);
os << "Hello, World!\n";

// try sending some data in input sequence
size_t n = sock.send(b.data());

b.consume(n); // sent data is removed from input sequence

Reading from a socket directly into a streambuf:

boost::asio::streambuf b;

// reserve 512 bytes in output sequence
boost::asio::streambuf::const_buffers_type bufs = b.prepare(512);

size_t n = sock.receive(bufs);

// received data is "committed" from output sequence to input sequence
b.commit(n);

std::istream is(&b);
std::string s;
is >> s;

basic_streambuf::basic_streambuf

Construct a basic_streambuf object.

basic_streambuf(
 std::size_t max_size = (std::numeric_limits< std::size_t >::max)(),

const Allocator & allocator = Allocator());

Constructs a streambuf with the specified maximum size. The initial size of the streambuf's input sequence is 0.

basic_streambuf::commit

Move characters from the output sequence to the input sequence.

void commit(
 std::size_t n);

Appends n characters from the start of the output sequence to the input sequence. The beginning of the output sequence is advanced
by n characters.

Requires a preceding call prepare(x) where x >= n, and no intervening operations that modify the input or output sequence.

Exceptions

std::length_error If n is greater than the size of the output sequence.

basic_streambuf::const_buffers_type

The type used to represent the input sequence as a list of buffers.

452

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined const_buffers_type;

basic_streambuf::consume

Remove characters from the input sequence.

void consume(
 std::size_t n);

Removes n characters from the beginning of the input sequence.

Exceptions

std::length_error If n > size().

basic_streambuf::data

Get a list of buffers that represents the input sequence.

const_buffers_type data() const;

Return Value

An object of type const_buffers_type that satisfies ConstBufferSequence requirements, representing all character arrays in the
input sequence.

Remarks

The returned object is invalidated by any basic_streambuf member function that modifies the input sequence or output sequence.

basic_streambuf::max_size

Get the maximum size of the basic_streambuf.

std::size_t max_size() const;

Return Value

The allowed maximum of the sum of the sizes of the input sequence and output sequence.

basic_streambuf::mutable_buffers_type

The type used to represent the output sequence as a list of buffers.

typedef implementation_defined mutable_buffers_type;

basic_streambuf::overflow

Override std::streambuf behaviour.

453

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int_type overflow(
 int_type c);

Behaves according to the specification of std::streambuf::overflow(), with the specialisation that std::length_error is
thrown if appending the character to the input sequence would require the condition size() > max_size() to be true.

basic_streambuf::prepare

Get a list of buffers that represents the output sequence, with the given size.

mutable_buffers_type prepare(
 std::size_t n);

Ensures that the output sequence can accommodate n characters, reallocating character array objects as necessary.

Return Value

An object of type mutable_buffers_type that satisfies MutableBufferSequence requirements, representing character array objects
at the start of the output sequence such that the sum of the buffer sizes is n.

Exceptions

std::length_error If size() + n > max_size().

Remarks

The returned object is invalidated by any basic_streambuf member function that modifies the input sequence or output sequence.

basic_streambuf::reserve

void reserve(
 std::size_t n);

basic_streambuf::size

Get the size of the input sequence.

std::size_t size() const;

Return Value

The size of the input sequence. The value is equal to that calculated for s in the following code:

size_t s = 0;
const_buffers_type bufs = data();
const_buffers_type::const_iterator i = bufs.begin();
while (i != bufs.end())
{
 const_buffer buf(*i++);
 s += buffer_size(buf);
}

basic_streambuf::underflow

Override std::streambuf behaviour.

454

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int_type underflow();

Behaves according to the specification of std::streambuf::underflow().

buffer
The boost::asio::buffer function is used to create a buffer object to represent raw memory, an array of POD elements, a vector of
POD elements, or a std::string.

mutable_buffers_1 buffer(
const mutable_buffer & b);

mutable_buffers_1 buffer(
const mutable_buffer & b,

 std::size_t max_size_in_bytes);

const_buffers_1 buffer(
const const_buffer & b);

const_buffers_1 buffer(
const const_buffer & b,

 std::size_t max_size_in_bytes);

mutable_buffers_1 buffer(
void * data,

 std::size_t size_in_bytes);

const_buffers_1 buffer(
const void * data,

 std::size_t size_in_bytes);

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 PodType & data);

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 PodType & data,
 std::size_t max_size_in_bytes);

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const PodType & data);

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const PodType & data,
 std::size_t max_size_in_bytes);

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(

455

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 boost::array< PodType, N > & data);

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 boost::array< PodType, N > & data,
 std::size_t max_size_in_bytes);

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(
 boost::array< const PodType, N > & data);

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(
 boost::array< const PodType, N > & data,
 std::size_t max_size_in_bytes);

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const boost::array< PodType, N > & data);

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const boost::array< PodType, N > & data,
 std::size_t max_size_in_bytes);

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
 std::vector< PodType, Allocator > & data);

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
 std::vector< PodType, Allocator > & data,
 std::size_t max_size_in_bytes);

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data);

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data,

 std::size_t max_size_in_bytes);

456

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffers_1 buffer(
const std::string & data);

const_buffers_1 buffer(
const std::string & data,

 std::size_t max_size_in_bytes);

A buffer object represents a contiguous region of memory as a 2-tuple consisting of a pointer and size in bytes. A tuple of the form
{void*, size_t} specifies a mutable (modifiable) region of memory. Similarly, a tuple of the form {const void*, size_t}
specifies a const (non-modifiable) region of memory. These two forms correspond to the classes mutable_buffer and const_buffer,
respectively. To mirror C++'s conversion rules, a mutable_buffer is implicitly convertible to a const_buffer, and the opposite conversion
is not permitted.

The simplest use case involves reading or writing a single buffer of a specified size:

sock.send(boost::asio::buffer(data, size));

In the above example, the return value of boost::asio::buffer meets the requirements of the ConstBufferSequence concept so that it
may be directly passed to the socket's write function. A buffer created for modifiable memory also meets the requirements of the
MutableBufferSequence concept.

An individual buffer may be created from a builtin array, std::vector or boost::array of POD elements. This helps prevent buffer
overruns by automatically determining the size of the buffer:

char d1[128];
size_t bytes_transferred = sock.receive(boost::asio::buffer(d1));

std::vector<char> d2(128);
bytes_transferred = sock.receive(boost::asio::buffer(d2));

boost::array<char, 128> d3;
bytes_transferred = sock.receive(boost::asio::buffer(d3));

In all three cases above, the buffers created are exactly 128 bytes long. Note that a vector is never automatically resized when creating
or using a buffer. The buffer size is determined using the vector's size() member function, and not its capacity.

Accessing Buffer Contents

The contents of a buffer may be accessed using the boost::asio::buffer_size and boost::asio::buffer_cast functions:

boost::asio::mutable_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);

boost::asio::const_buffer b2 = ...;
std::size_t s2 = boost::asio::buffer_size(b2);
const void* p2 = boost::asio::buffer_cast<const void*>(b2);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully considered.

Buffer Invalidation

A buffer object does not have any ownership of the memory it refers to. It is the responsibility of the application to ensure the memory
region remains valid until it is no longer required for an I/O operation. When the memory is no longer available, the buffer is said
to have been invalidated.

For the boost::asio::buffer overloads that accept an argument of type std::vector, the buffer objects returned are invalidated by any
vector operation that also invalidates all references, pointers and iterators referring to the elements in the sequence (C++ Std, 23.2.4)

457

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For the boost::asio::buffer overloads that accept an argument of type std::string, the buffer objects returned are invalidated according
to the rules defined for invalidation of references, pointers and iterators referring to elements of the sequence (C++ Std, 21.3).

Buffer Arithmetic

Buffer objects may be manipulated using simple arithmetic in a safe way which helps prevent buffer overruns. Consider an array
initialised as follows:

boost::array<char, 6> a = { 'a', 'b', 'c', 'd', 'e' };

A buffer object b1 created using:

b1 = boost::asio::buffer(a);

represents the entire array, { 'a', 'b', 'c', 'd', 'e' }. An optional second argument to the boost::asio::buffer function
may be used to limit the size, in bytes, of the buffer:

b2 = boost::asio::buffer(a, 3);

such that b2 represents the data { 'a', 'b', 'c' }. Even if the size argument exceeds the actual size of the array, the size of
the buffer object created will be limited to the array size.

An offset may be applied to an existing buffer to create a new one:

b3 = b1 + 2;

where b3 will set to represent { 'c', 'd', 'e' }. If the offset exceeds the size of the existing buffer, the newly created buffer
will be empty.

Both an offset and size may be specified to create a buffer that corresponds to a specific range of bytes within an existing buffer:

b4 = boost::asio::buffer(b1 + 1, 3);

so that b4 will refer to the bytes { 'b', 'c', 'd' }.

Buffers and Scatter-Gather I/O

To read or write using multiple buffers (i.e. scatter-gather I/O), multiple buffer objects may be assigned into a container that supports
the MutableBufferSequence (for read) or ConstBufferSequence (for write) concepts:

458

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

char d1[128];
std::vector<char> d2(128);
boost::array<char, 128> d3;

boost::array<mutable_buffer, 3> bufs1 = {
 boost::asio::buffer(d1),
 boost::asio::buffer(d2),
 boost::asio::buffer(d3) };
bytes_transferred = sock.receive(bufs1);

std::vector<const_buffer> bufs2;
bufs2.push_back(boost::asio::buffer(d1));
bufs2.push_back(boost::asio::buffer(d2));
bufs2.push_back(boost::asio::buffer(d3));
bytes_transferred = sock.send(bufs2);

buffer (1 of 22 overloads)

Create a new modifiable buffer from an existing buffer.

mutable_buffers_1 buffer(
const mutable_buffer & b);

Return Value

mutable_buffers_1(b).

buffer (2 of 22 overloads)

Create a new modifiable buffer from an existing buffer.

mutable_buffers_1 buffer(
const mutable_buffer & b,

 std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
 buffer_cast<void*>(b),
 min(buffer_size(b), max_size_in_bytes));

buffer (3 of 22 overloads)

Create a new non-modifiable buffer from an existing buffer.

const_buffers_1 buffer(
const const_buffer & b);

Return Value

const_buffers_1(b).

buffer (4 of 22 overloads)

Create a new non-modifiable buffer from an existing buffer.

459

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffers_1 buffer(
const const_buffer & b,

 std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
 buffer_cast<const void*>(b),
 min(buffer_size(b), max_size_in_bytes));

buffer (5 of 22 overloads)

Create a new modifiable buffer that represents the given memory range.

mutable_buffers_1 buffer(
void * data,

 std::size_t size_in_bytes);

Return Value

mutable_buffers_1(data, size_in_bytes).

buffer (6 of 22 overloads)

Create a new non-modifiable buffer that represents the given memory range.

const_buffers_1 buffer(
const void * data,

 std::size_t size_in_bytes);

Return Value

const_buffers_1(data, size_in_bytes).

buffer (7 of 22 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 PodType & data);

Return Value

A mutable_buffers_1 value equivalent to:

460

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mutable_buffers_1(
static_cast<void*>(data),

 N * sizeof(PodType));

buffer (8 of 22 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 PodType & data,
 std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
static_cast<void*>(data),

 min(N * sizeof(PodType), max_size_in_bytes));

buffer (9 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const PodType & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
static_cast<const void*>(data),

 N * sizeof(PodType));

buffer (10 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const PodType & data,
 std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

461

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffers_1(
static_cast<const void*>(data),

 min(N * sizeof(PodType), max_size_in_bytes));

buffer (11 of 22 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 boost::array< PodType, N > & data);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
 data.data(),
 data.size() * sizeof(PodType));

buffer (12 of 22 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
mutable_buffers_1 buffer(
 boost::array< PodType, N > & data,
 std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
 data.data(),
 min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (13 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(
 boost::array< const PodType, N > & data);

Return Value

A const_buffers_1 value equivalent to:

462

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffers_1(
 data.data(),
 data.size() * sizeof(PodType));

buffer (14 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(
 boost::array< const PodType, N > & data,
 std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
 data.data(),
 min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (15 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const boost::array< PodType, N > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
 data.data(),
 data.size() * sizeof(PodType));

buffer (16 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,

 std::size_t N>
const_buffers_1 buffer(

const boost::array< PodType, N > & data,
 std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

463

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffers_1(
 data.data(),
 min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (17 of 22 overloads)

Create a new modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
 std::vector< PodType, Allocator > & data);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
 data.size() ? &data[0] : 0,
 data.size() * sizeof(PodType));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (18 of 22 overloads)

Create a new modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
 std::vector< PodType, Allocator > & data,
 std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
 data.size() ? &data[0] : 0,
 min(data.size() * sizeof(PodType), max_size_in_bytes));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (19 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD vector.

464

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
 data.size() ? &data[0] : 0,
 data.size() * sizeof(PodType));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (20 of 22 overloads)

Create a new non-modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data,

 std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
 data.size() ? &data[0] : 0,
 min(data.size() * sizeof(PodType), max_size_in_bytes));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (21 of 22 overloads)

Create a new non-modifiable buffer that represents the given string.

const_buffers_1 buffer(
const std::string & data);

Return Value

const_buffers_1(data.data(), data.size()).

Remarks

The buffer is invalidated by any non-const operation called on the given string object.

465

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer (22 of 22 overloads)

Create a new non-modifiable buffer that represents the given string.

const_buffers_1 buffer(
const std::string & data,

 std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
 data.data(),
 min(data.size(), max_size_in_bytes));

Remarks

The buffer is invalidated by any non-const operation called on the given string object.

buffered_read_stream
Adds buffering to the read-related operations of a stream.

template<
typename Stream>

class buffered_read_stream :
 noncopyable

Types

DescriptionName

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

466

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous fill.async_fill

Start an asynchronous read. The buffer into which the data will
be read must be valid for the lifetime of the asynchronous oper-
ation.

async_read_some

Start an asynchronous write. The data being written must be
valid for the lifetime of the asynchronous operation.

async_write_some

Construct, passing the specified argument to initialise the next
layer.

buffered_read_stream

Close the stream.close

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation. Throws an ex-
ception on failure.

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation, or 0 if an error
occurred.

fill

Get the io_service associated with the object.get_io_service

Determine the amount of data that may be read without blocking.in_avail

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream. Returns the number of
bytes read. Throws an exception on failure.

Peek at the incoming data on the stream. Returns the number of
bytes read, or 0 if an error occurred.

peek

Read some data from the stream. Returns the number of bytes
read. Throws an exception on failure.

Read some data from the stream. Returns the number of bytes
read or 0 if an error occurred.

read_some

Write the given data to the stream. Returns the number of bytes
written. Throws an exception on failure.

Write the given data to the stream. Returns the number of bytes
written, or 0 if an error occurred.

write_some

467

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The default buffer size.default_buffer_size

The buffered_read_stream class template can be used to add buffering to the synchronous and asynchronous read operations of a
stream.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

buffered_read_stream::async_fill

Start an asynchronous fill.

template<
typename ReadHandler>

void async_fill(
 ReadHandler handler);

buffered_read_stream::async_read_some

Start an asynchronous read. The buffer into which the data will be read must be valid for the lifetime of the asynchronous operation.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

buffered_read_stream::async_write_some

Start an asynchronous write. The data being written must be valid for the lifetime of the asynchronous operation.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

buffered_read_stream::buffered_read_stream

Construct, passing the specified argument to initialise the next layer.

468

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Arg>

buffered_read_stream(
 Arg & a);

template<
typename Arg>

buffered_read_stream(
 Arg & a,
 std::size_t buffer_size);

buffered_read_stream::buffered_read_stream (1 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_read_stream(
 Arg & a);

buffered_read_stream::buffered_read_stream (2 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_read_stream(
 Arg & a,
 std::size_t buffer_size);

buffered_read_stream::close

Close the stream.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

buffered_read_stream::close (1 of 2 overloads)

Close the stream.

void close();

buffered_read_stream::close (2 of 2 overloads)

Close the stream.

boost::system::error_code close(
 boost::system::error_code & ec);

buffered_read_stream::default_buffer_size

The default buffer size.

469

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const std::size_t default_buffer_size = implementation_defined;

buffered_read_stream::fill

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
 boost::system::error_code & ec);

buffered_read_stream::fill (1 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();

buffered_read_stream::fill (2 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
 boost::system::error_code & ec);

buffered_read_stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

buffered_read_stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

std::size_t in_avail(
 boost::system::error_code & ec);

buffered_read_stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

buffered_read_stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

470

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t in_avail(
 boost::system::error_code & ec);

buffered_read_stream::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

buffered_read_stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_read_stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

buffered_read_stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_read_stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

buffered_read_stream::next_layer

Get a reference to the next layer.

next_layer_type & next_layer();

buffered_read_stream::next_layer_type

The type of the next layer.

471

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::remove_reference< Stream >::type next_layer_type;

buffered_read_stream::peek

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_read_stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

buffered_read_stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_read_stream::read_some

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

472

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_read_stream::read_some (1 of 2 overloads)

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

buffered_read_stream::read_some (2 of 2 overloads)

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_read_stream::write_some

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_read_stream::write_some (1 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

buffered_read_stream::write_some (2 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

473

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_stream
Adds buffering to the read- and write-related operations of a stream.

template<
typename Stream>

class buffered_stream :
 noncopyable

Types

DescriptionName

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

474

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

475

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Start an asynchronous fill.async_fill

Start an asynchronous flush.async_flush

Start an asynchronous read. The buffer into which the data will
be read must be valid for the lifetime of the asynchronous oper-
ation.

async_read_some

Start an asynchronous write. The data being written must be
valid for the lifetime of the asynchronous operation.

async_write_some

Construct, passing the specified argument to initialise the next
layer.

buffered_stream

Close the stream.close

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation. Throws an ex-
ception on failure.

fill

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation, or 0 if an error
occurred.

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation. Throws an exception on failure.

flush

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation, or 0 if an error occurred.

Get the io_service associated with the object.get_io_service

Determine the amount of data that may be read without blocking.in_avail

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream. Returns the number of
bytes read. Throws an exception on failure.

peek

Peek at the incoming data on the stream. Returns the number of
bytes read, or 0 if an error occurred.

Read some data from the stream. Returns the number of bytes
read. Throws an exception on failure.

read_some

Read some data from the stream. Returns the number of bytes
read or 0 if an error occurred.

476

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Write the given data to the stream. Returns the number of bytes
written. Throws an exception on failure.

Write the given data to the stream. Returns the number of bytes
written, or 0 if an error occurred.

write_some

The buffered_stream class template can be used to add buffering to the synchronous and asynchronous read and write operations of
a stream.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

buffered_stream::async_fill

Start an asynchronous fill.

template<
typename ReadHandler>

void async_fill(
 ReadHandler handler);

buffered_stream::async_flush

Start an asynchronous flush.

template<
typename WriteHandler>

void async_flush(
 WriteHandler handler);

buffered_stream::async_read_some

Start an asynchronous read. The buffer into which the data will be read must be valid for the lifetime of the asynchronous operation.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

buffered_stream::async_write_some

Start an asynchronous write. The data being written must be valid for the lifetime of the asynchronous operation.

477

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

buffered_stream::buffered_stream

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_stream(
 Arg & a);

template<
typename Arg>

buffered_stream(
 Arg & a,
 std::size_t read_buffer_size,
 std::size_t write_buffer_size);

buffered_stream::buffered_stream (1 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_stream(
 Arg & a);

buffered_stream::buffered_stream (2 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_stream(
 Arg & a,
 std::size_t read_buffer_size,
 std::size_t write_buffer_size);

buffered_stream::close

Close the stream.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

buffered_stream::close (1 of 2 overloads)

Close the stream.

478

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();

buffered_stream::close (2 of 2 overloads)

Close the stream.

boost::system::error_code close(
 boost::system::error_code & ec);

buffered_stream::fill

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
 boost::system::error_code & ec);

buffered_stream::fill (1 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();

buffered_stream::fill (2 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
 boost::system::error_code & ec);

buffered_stream::flush

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
 boost::system::error_code & ec);

buffered_stream::flush (1 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

479

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t flush();

buffered_stream::flush (2 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
 boost::system::error_code & ec);

buffered_stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

buffered_stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

std::size_t in_avail(
 boost::system::error_code & ec);

buffered_stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

buffered_stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail(
 boost::system::error_code & ec);

buffered_stream::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

buffered_stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

480

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const lowest_layer_type & lowest_layer() const;

buffered_stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

buffered_stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

buffered_stream::next_layer

Get a reference to the next layer.

next_layer_type & next_layer();

buffered_stream::next_layer_type

The type of the next layer.

typedef boost::remove_reference< Stream >::type next_layer_type;

buffered_stream::peek

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

481

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

buffered_stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_stream::read_some

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_stream::read_some (1 of 2 overloads)

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

buffered_stream::read_some (2 of 2 overloads)

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_stream::write_some

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

482

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_stream::write_some (1 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

buffered_stream::write_some (2 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_write_stream
Adds buffering to the write-related operations of a stream.

template<
typename Stream>

class buffered_write_stream :
 noncopyable

Types

DescriptionName

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

483

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous flush.async_flush

Start an asynchronous read. The buffer into which the data will
be read must be valid for the lifetime of the asynchronous oper-
ation.

async_read_some

Start an asynchronous write. The data being written must be
valid for the lifetime of the asynchronous operation.

async_write_some

Construct, passing the specified argument to initialise the next
layer.

buffered_write_stream

Close the stream.close

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation. Throws an exception on failure.

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation, or 0 if an error occurred.

flush

Get the io_service associated with the object.get_io_service

Determine the amount of data that may be read without blocking.in_avail

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream. Returns the number of
bytes read. Throws an exception on failure.

Peek at the incoming data on the stream. Returns the number of
bytes read, or 0 if an error occurred.

peek

Read some data from the stream. Returns the number of bytes
read. Throws an exception on failure.

Read some data from the stream. Returns the number of bytes
read or 0 if an error occurred.

read_some

Write the given data to the stream. Returns the number of bytes
written. Throws an exception on failure.

Write the given data to the stream. Returns the number of bytes
written, or 0 if an error occurred and the error handler did not
throw.

write_some

484

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The default buffer size.default_buffer_size

The buffered_write_stream class template can be used to add buffering to the synchronous and asynchronous write operations of a
stream.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

buffered_write_stream::async_flush

Start an asynchronous flush.

template<
typename WriteHandler>

void async_flush(
 WriteHandler handler);

buffered_write_stream::async_read_some

Start an asynchronous read. The buffer into which the data will be read must be valid for the lifetime of the asynchronous operation.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

buffered_write_stream::async_write_some

Start an asynchronous write. The data being written must be valid for the lifetime of the asynchronous operation.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

buffered_write_stream::buffered_write_stream

Construct, passing the specified argument to initialise the next layer.

485

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Arg>

buffered_write_stream(
 Arg & a);

template<
typename Arg>

buffered_write_stream(
 Arg & a,
 std::size_t buffer_size);

buffered_write_stream::buffered_write_stream (1 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_write_stream(
 Arg & a);

buffered_write_stream::buffered_write_stream (2 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_write_stream(
 Arg & a,
 std::size_t buffer_size);

buffered_write_stream::close

Close the stream.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

buffered_write_stream::close (1 of 2 overloads)

Close the stream.

void close();

buffered_write_stream::close (2 of 2 overloads)

Close the stream.

boost::system::error_code close(
 boost::system::error_code & ec);

buffered_write_stream::default_buffer_size

The default buffer size.

486

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const std::size_t default_buffer_size = implementation_defined;

buffered_write_stream::flush

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
 boost::system::error_code & ec);

buffered_write_stream::flush (1 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();

buffered_write_stream::flush (2 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
 boost::system::error_code & ec);

buffered_write_stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

buffered_write_stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

std::size_t in_avail(
 boost::system::error_code & ec);

buffered_write_stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

487

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t in_avail();

buffered_write_stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail(
 boost::system::error_code & ec);

buffered_write_stream::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

buffered_write_stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_write_stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

buffered_write_stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_write_stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

buffered_write_stream::next_layer

Get a reference to the next layer.

488

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

next_layer_type & next_layer();

buffered_write_stream::next_layer_type

The type of the next layer.

typedef boost::remove_reference< Stream >::type next_layer_type;

buffered_write_stream::peek

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_write_stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

buffered_write_stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_write_stream::read_some

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

489

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_write_stream::read_some (1 of 2 overloads)

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

buffered_write_stream::read_some (2 of 2 overloads)

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_write_stream::write_some

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred and the error handler did not throw.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

buffered_write_stream::write_some (1 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

buffered_write_stream::write_some (2 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred and the error handler did not throw.

490

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

buffers_begin
Construct an iterator representing the beginning of the buffers' data.

template<
typename BufferSequence>

buffers_iterator< BufferSequence > buffers_begin(
const BufferSequence & buffers);

buffers_end
Construct an iterator representing the end of the buffers' data.

template<
typename BufferSequence>

buffers_iterator< BufferSequence > buffers_end(
const BufferSequence & buffers);

buffers_iterator
A random access iterator over the bytes in a buffer sequence.

template<
typename BufferSequence,
typename ByteType = char>

class buffers_iterator

Member Functions

DescriptionName

Construct an iterator representing the beginning of the buffers'
data.

begin

Default constructor. Creates an iterator in an undefined state.buffers_iterator

Construct an iterator representing the end of the buffers' data.end

buffers_iterator::begin

Construct an iterator representing the beginning of the buffers' data.

491

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static buffers_iterator begin(
const BufferSequence & buffers);

buffers_iterator::buffers_iterator

Default constructor. Creates an iterator in an undefined state.

buffers_iterator();

buffers_iterator::end

Construct an iterator representing the end of the buffers' data.

static buffers_iterator end(
const BufferSequence & buffers);

const_buffer
Holds a buffer that cannot be modified.

class const_buffer

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

Construct a non-modifiable buffer from a modifiable one.

const_buffer

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new non-modifiable buffer that is offset from the start
of another.

operator+

The const_buffer class provides a safe representation of a buffer that cannot be modified. It does not own the underlying data, and
so is cheap to copy or assign.

const_buffer::buffer_cast

Cast a non-modifiable buffer to a specified pointer to POD type.

492

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const const_buffer & b);

const_buffer::buffer_size

Get the number of bytes in a non-modifiable buffer.

std::size_t buffer_size(
const const_buffer & b);

const_buffer::const_buffer

Construct an empty buffer.

const_buffer();

Construct a buffer to represent a given memory range.

const_buffer(
const void * data,

 std::size_t size);

Construct a non-modifiable buffer from a modifiable one.

const_buffer(
const mutable_buffer & b);

const_buffer::const_buffer (1 of 3 overloads)

Construct an empty buffer.

const_buffer();

const_buffer::const_buffer (2 of 3 overloads)

Construct a buffer to represent a given memory range.

const_buffer(
const void * data,

 std::size_t size);

const_buffer::const_buffer (3 of 3 overloads)

Construct a non-modifiable buffer from a modifiable one.

const_buffer(
const mutable_buffer & b);

const_buffer::operator+

Create a new non-modifiable buffer that is offset from the start of another.

493

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffer operator+(
const const_buffer & b,

 std::size_t start);

const_buffer operator+(
 std::size_t start,

const const_buffer & b);

const_buffer::operator+ (1 of 2 overloads)

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
const const_buffer & b,

 std::size_t start);

const_buffer::operator+ (2 of 2 overloads)

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
 std::size_t start,

const const_buffer & b);

const_buffers_1
Adapts a single non-modifiable buffer so that it meets the requirements of the ConstBufferSequence concept.

class const_buffers_1 :
public const_buffer

Types

DescriptionName

A random-access iterator type that may be used to read elements.const_iterator

The type for each element in the list of buffers.value_type

Member Functions

DescriptionName

Get a random-access iterator to the first element.begin

Construct to represent a given memory range.

Construct to represent a single non-modifiable buffer.

const_buffers_1

Get a random-access iterator for one past the last element.end

494

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new non-modifiable buffer that is offset from the start
of another.

operator+

const_buffers_1::begin

Get a random-access iterator to the first element.

const_iterator begin() const;

const_buffers_1::buffer_cast

Inherited from const_buffer.

Cast a non-modifiable buffer to a specified pointer to POD type.

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const const_buffer & b);

const_buffers_1::buffer_size

Inherited from const_buffer.

Get the number of bytes in a non-modifiable buffer.

std::size_t buffer_size(
const const_buffer & b);

const_buffers_1::const_buffers_1

Construct to represent a given memory range.

const_buffers_1(
const void * data,

 std::size_t size);

Construct to represent a single non-modifiable buffer.

const_buffers_1(
const const_buffer & b);

const_buffers_1::const_buffers_1 (1 of 2 overloads)

Construct to represent a given memory range.

495

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffers_1(
const void * data,

 std::size_t size);

const_buffers_1::const_buffers_1 (2 of 2 overloads)

Construct to represent a single non-modifiable buffer.

const_buffers_1(
const const_buffer & b);

const_buffers_1::const_iterator

A random-access iterator type that may be used to read elements.

typedef const const_buffer * const_iterator;

const_buffers_1::end

Get a random-access iterator for one past the last element.

const_iterator end() const;

const_buffers_1::operator+

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
const const_buffer & b,

 std::size_t start);

const_buffer operator+(
 std::size_t start,

const const_buffer & b);

const_buffers_1::operator+ (1 of 2 overloads)

Inherited from const_buffer.

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
const const_buffer & b,

 std::size_t start);

const_buffers_1::operator+ (2 of 2 overloads)

Inherited from const_buffer.

Create a new non-modifiable buffer that is offset from the start of another.

496

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffer operator+(
 std::size_t start,

const const_buffer & b);

const_buffers_1::value_type

The type for each element in the list of buffers.

typedef const_buffer value_type;

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

Construct a non-modifiable buffer from a modifiable one.

const_buffer

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new non-modifiable buffer that is offset from the start
of another.

operator+

The const_buffer class provides a safe representation of a buffer that cannot be modified. It does not own the underlying data, and
so is cheap to copy or assign.

datagram_socket_service
Default service implementation for a datagram socket.

template<
typename Protocol>

class datagram_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a datagram socket.implementation_type

The native socket type.native_type

The protocol type.protocol_type

497

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

498

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a datagram socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous receive that will get the endpoint of the
sender.

async_receive_from

Start an asynchronous send.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

bind

Cancel all asynchronous operations associated with the socket.cancel

Close a datagram socket implementation.close

Connect the datagram socket to the specified endpoint.connect

Construct a new datagram socket implementation.construct

Construct a new datagram socket service for the specified
io_service.

datagram_socket_service

Destroy a datagram socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Get the native socket implementation.native

open

Receive some data from the peer.receive

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

499

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Send a datagram to the specified endpoint.send_to

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Destroy all user-defined handler objects owned by the service.shutdown_service

Data Members

DescriptionName

The unique service identifier.id

datagram_socket_service::assign

Assign an existing native socket to a datagram socket.

boost::system::error_code assign(
 implementation_type & impl,

const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

datagram_socket_service::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void async_connect(
 implementation_type & impl,

const endpoint_type & peer_endpoint,
 ConnectHandler handler);

datagram_socket_service::async_receive

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 socket_base::message_flags flags,
 ReadHandler handler);

datagram_socket_service::async_receive_from

Start an asynchronous receive that will get the endpoint of the sender.

500

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 ReadHandler handler);

datagram_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 socket_base::message_flags flags,
 WriteHandler handler);

datagram_socket_service::async_send_to

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
 implementation_type & impl,

const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 WriteHandler handler);

datagram_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
const implementation_type & impl,

 boost::system::error_code & ec) const;

datagram_socket_service::available

Determine the number of bytes available for reading.

501

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t available(
const implementation_type & impl,

 boost::system::error_code & ec) const;

datagram_socket_service::bind

boost::system::error_code bind(
 implementation_type & impl,

const endpoint_type & endpoint,
 boost::system::error_code & ec);

datagram_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

datagram_socket_service::close

Close a datagram socket implementation.

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

datagram_socket_service::connect

Connect the datagram socket to the specified endpoint.

boost::system::error_code connect(
 implementation_type & impl,

const endpoint_type & peer_endpoint,
 boost::system::error_code & ec);

datagram_socket_service::construct

Construct a new datagram socket implementation.

void construct(
 implementation_type & impl);

datagram_socket_service::datagram_socket_service

Construct a new datagram socket service for the specified io_service.

datagram_socket_service(
 boost::asio::io_service & io_service);

datagram_socket_service::destroy

Destroy a datagram socket implementation.

502

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void destroy(
 implementation_type & impl);

datagram_socket_service::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

datagram_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

datagram_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,

 GettableSocketOption & option,
 boost::system::error_code & ec) const;

datagram_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

datagram_socket_service::implementation_type

The type of a datagram socket.

typedef implementation_defined implementation_type;

datagram_socket_service::io_control

Perform an IO control command on the socket.

503

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

boost::system::error_code io_control(
 implementation_type & impl,
 IoControlCommand & command,
 boost::system::error_code & ec);

datagram_socket_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

datagram_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

datagram_socket_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

datagram_socket_service::native

Get the native socket implementation.

native_type native(
 implementation_type & impl);

datagram_socket_service::native_type

The native socket type.

typedef implementation_defined native_type;

datagram_socket_service::open

boost::system::error_code open(
 implementation_type & impl,

const protocol_type & protocol,
 boost::system::error_code & ec);

datagram_socket_service::protocol_type

The protocol type.

504

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef Protocol protocol_type;

datagram_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

datagram_socket_service::receive_from

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

datagram_socket_service::remote_endpoint

Get the remote endpoint.

endpoint_type remote_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

datagram_socket_service::send

Send the given data to the peer.

template<
typename ConstBufferSequence>

std::size_t send(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

datagram_socket_service::send_to

Send a datagram to the specified endpoint.

505

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send_to(
 implementation_type & impl,

const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

datagram_socket_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
 implementation_type & impl,

const SettableSocketOption & option,
 boost::system::error_code & ec);

datagram_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 implementation_type & impl,
 socket_base::shutdown_type what,
 boost::system::error_code & ec);

datagram_socket_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

deadline_timer
Typedef for the typical usage of timer.

506

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_deadline_timer< boost::posix_time::ptime > deadline_timer;

Types

DescriptionName

The duration type.duration_type

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time type.time_type

The time traits type.traits_type

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_deadline_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Perform a blocking wait on the timer.wait

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_deadline_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

507

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Most applications will use the boost::asio::deadline_timer typedef.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait:

// Construct a timer without setting an expiry time.
boost::asio::deadline_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(boost::posix_time::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait:

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::deadline_timer timer(io_service,
 boost::posix_time::time_from_string("2005-12-07 23:59:59.000"));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active deadline_timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

508

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.

 my_timer.async_wait(on_timeout);
}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_deadline_timer::expires_from_now() function cancels any pending asynchronous waits, and returns the
number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has already been
executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::operation_aborted.

deadline_timer_service
Default service implementation for a timer.

template<
typename TimeType,
typename TimeTraits = boost::asio::time_traits<TimeType>>

class deadline_timer_service :
public io_service::service

Types

DescriptionName

The duration type.duration_type

The implementation type of the deadline timer.implementation_type

The time type.time_type

The time traits type.traits_type

509

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

async_wait

Cancel any asynchronous wait operations associated with the
timer.

cancel

Construct a new timer implementation.construct

Construct a new timer service for the specified io_service.deadline_timer_service

Destroy a timer implementation.destroy

Get the expiry time for the timer as an absolute time.

Set the expiry time for the timer as an absolute time.

expires_at

Get the expiry time for the timer relative to now.

Set the expiry time for the timer relative to now.

expires_from_now

Get the io_service object that owns the service.get_io_service

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Destroy all user-defined handler objects owned by the service.shutdown_service

wait

Data Members

DescriptionName

The unique service identifier.id

deadline_timer_service::async_wait

template<
typename WaitHandler>

void async_wait(
 implementation_type & impl,
 WaitHandler handler);

deadline_timer_service::cancel

Cancel any asynchronous wait operations associated with the timer.

510

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

deadline_timer_service::construct

Construct a new timer implementation.

void construct(
 implementation_type & impl);

deadline_timer_service::deadline_timer_service

Construct a new timer service for the specified io_service.

deadline_timer_service(
 boost::asio::io_service & io_service);

deadline_timer_service::destroy

Destroy a timer implementation.

void destroy(
 implementation_type & impl);

deadline_timer_service::duration_type

The duration type.

typedef traits_type::duration_type duration_type;

deadline_timer_service::expires_at

Get the expiry time for the timer as an absolute time.

time_type expires_at(
const implementation_type & impl) const;

Set the expiry time for the timer as an absolute time.

std::size_t expires_at(
 implementation_type & impl,

const time_type & expiry_time,
 boost::system::error_code & ec);

deadline_timer_service::expires_at (1 of 2 overloads)

Get the expiry time for the timer as an absolute time.

511

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

time_type expires_at(
const implementation_type & impl) const;

deadline_timer_service::expires_at (2 of 2 overloads)

Set the expiry time for the timer as an absolute time.

std::size_t expires_at(
 implementation_type & impl,

const time_type & expiry_time,
 boost::system::error_code & ec);

deadline_timer_service::expires_from_now

Get the expiry time for the timer relative to now.

duration_type expires_from_now(
const implementation_type & impl) const;

Set the expiry time for the timer relative to now.

std::size_t expires_from_now(
 implementation_type & impl,

const duration_type & expiry_time,
 boost::system::error_code & ec);

deadline_timer_service::expires_from_now (1 of 2 overloads)

Get the expiry time for the timer relative to now.

duration_type expires_from_now(
const implementation_type & impl) const;

deadline_timer_service::expires_from_now (2 of 2 overloads)

Set the expiry time for the timer relative to now.

std::size_t expires_from_now(
 implementation_type & impl,

const duration_type & expiry_time,
 boost::system::error_code & ec);

deadline_timer_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

deadline_timer_service::id

The unique service identifier.

512

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static boost::asio::io_service::id id;

deadline_timer_service::implementation_type

The implementation type of the deadline timer.

typedef implementation_defined implementation_type;

deadline_timer_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

deadline_timer_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

deadline_timer_service::time_type

The time type.

typedef traits_type::time_type time_type;

deadline_timer_service::traits_type

The time traits type.

513

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef TimeTraits traits_type;

deadline_timer_service::wait

void wait(
 implementation_type & impl,
 boost::system::error_code & ec);

error::addrinfo_category

static const boost::system::error_category & addrinfo_category = boost::asio::error::get_addrinfo_cat↵
egory();

error::addrinfo_errors

enum addrinfo_errors

Values

service_not_found The service is not supported for the given socket type.

socket_type_not_supported The socket type is not supported.

error::basic_errors

enum basic_errors

Values

access_denied Permission denied.

address_family_not_supported Address family not supported by protocol.

address_in_use Address already in use.

already_connected Transport endpoint is already connected.

already_started Operation already in progress.

broken_pipe Broken pipe.

connection_aborted A connection has been aborted.

connection_refused Connection refused.

connection_reset Connection reset by peer.

bad_descriptor Bad file descriptor.

fault Bad address.

host_unreachable No route to host.

in_progress Operation now in progress.

514

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

interrupted Interrupted system call.

invalid_argument Invalid argument.

message_size Message too long.

name_too_long The name was too long.

network_down Network is down.

network_reset Network dropped connection on reset.

network_unreachable Network is unreachable.

no_descriptors Too many open files.

no_buffer_space No buffer space available.

no_memory Cannot allocate memory.

no_permission Operation not permitted.

no_protocol_option Protocol not available.

not_connected Transport endpoint is not connected.

not_socket Socket operation on non-socket.

operation_aborted Operation cancelled.

operation_not_supported Operation not supported.

shut_down Cannot send after transport endpoint shutdown.

timed_out Connection timed out.

try_again Resource temporarily unavailable.

would_block The socket is marked non-blocking and the requested operation would block.

515

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

error::get_addrinfo_category

const boost::system::error_category & get_addrinfo_category();

error::get_misc_category

const boost::system::error_category & get_misc_category();

error::get_netdb_category

const boost::system::error_category & get_netdb_category();

error::get_ssl_category

const boost::system::error_category & get_ssl_category();

error::get_system_category

const boost::system::error_category & get_system_category();

error::make_error_code

boost::system::error_code make_error_code(
 basic_errors e);

boost::system::error_code make_error_code(
 netdb_errors e);

boost::system::error_code make_error_code(
 addrinfo_errors e);

boost::system::error_code make_error_code(
 misc_errors e);

boost::system::error_code make_error_code(
 ssl_errors e);

error::make_error_code (1 of 5 overloads)

boost::system::error_code make_error_code(
 basic_errors e);

error::make_error_code (2 of 5 overloads)

boost::system::error_code make_error_code(
 netdb_errors e);

error::make_error_code (3 of 5 overloads)

516

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code make_error_code(
 addrinfo_errors e);

error::make_error_code (4 of 5 overloads)

boost::system::error_code make_error_code(
 misc_errors e);

error::make_error_code (5 of 5 overloads)

boost::system::error_code make_error_code(
 ssl_errors e);

error::misc_category

static const boost::system::error_category & misc_category = boost::asio::error::get_misc_category();

error::misc_errors

enum misc_errors

Values

already_open Already open.

eof End of file or stream.

not_found Element not found.

fd_set_failure The descriptor cannot fit into the select system call's fd_set.

error::netdb_category

static const boost::system::error_category & netdb_category = boost::asio::error::get_netdb_cat↵
egory();

error::netdb_errors

enum netdb_errors

Values

host_not_found Host not found (authoritative).

host_not_found_try_again Host not found (non-authoritative).

no_data The query is valid but does not have associated address data.

no_recovery A non-recoverable error occurred.

517

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

error::ssl_category

static const boost::system::error_category & ssl_category = boost::asio::error::get_ssl_category();

error::ssl_errors

enum ssl_errors

error::system_category

static const boost::system::error_category & system_category = boost::asio::error::get_system_cat↵
egory();

has_service

template<
typename Service>

bool has_service(
 io_service & ios);

This function is used to determine whether the io_service contains a service object corresponding to the given service type.

Parameters

ios The io_service object that owns the service.

Return Value

A boolean indicating whether the io_service contains the service.

invalid_service_owner
Exception thrown when trying to add a service object to an io_service where the service has a different owner.

class invalid_service_owner

Member Functions

DescriptionName

invalid_service_owner

invalid_service_owner::invalid_service_owner

invalid_service_owner();

io_service
Provides core I/O functionality.

518

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class io_service :
 noncopyable

Types

DescriptionName

Class used to uniquely identify a service.id

Base class for all io_service services.service

Provides serialised handler execution.strand

Class to inform the io_service when it has work to do.work

Member Functions

DescriptionName

Request the io_service to invoke the given handler.dispatch

Constructor.io_service

Run the io_service's event processing loop to execute ready
handlers.

poll

Run the io_service's event processing loop to execute one ready
handler.

poll_one

Request the io_service to invoke the given handler and return
immediately.

post

Reset the io_service in preparation for a subsequent run() invoc-
ation.

reset

Run the io_service's event processing loop.run

Run the io_service's event processing loop to execute at most
one handler.

run_one

Stop the io_service's event processing loop.stop

Create a new handler that automatically dispatches the wrapped
handler on the io_service.

wrap

Destructor.~io_service

519

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Add a service object to the io_service.add_service

Determine if an io_service contains a specified service type.has_service

Obtain the service object corresponding to the given type.use_service

The io_service class provides the core I/O functionality for users of the asynchronous I/O objects, including:

• boost::asio::ip::tcp::socket

• boost::asio::ip::tcp::acceptor

• boost::asio::ip::udp::socket

• boost::asio::deadline_timer.

The io_service class also includes facilities intended for developers of custom asynchronous services.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe, with the exception that calling reset() while there are unfinished run() calls results in undefined behaviour.

Effect of exceptions thrown from handlers

If an exception is thrown from a handler, the exception is allowed to propagate through the throwing thread's invocation of
boost::asio::io_service::run(), boost::asio::io_service::run_one(), boost::asio::io_service::poll() or boost::asio::io_service::poll_one().
No other threads that are calling any of these functions are affected. It is then the responsibility of the application to catch the exception.

After the exception has been caught, the boost::asio::io_service::run(), boost::asio::io_service::run_one(), boost::asio::io_service::poll()
or boost::asio::io_service::poll_one() call may be restarted without the need for an intervening call to boost::asio::io_service::reset().
This allows the thread to rejoin the io_service's thread pool without impacting any other threads in the pool.

For example:

520

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service io_service;
...
for (;;)
{
try
{

 io_service.run();
break; // run() exited normally

}
catch (my_exception& e)
{
// Deal with exception as appropriate.

}
}

Stopping the io_service from running out of work

Some applications may need to prevent an io_service's run() call from returning when there is no more work to do. For example, the
io_service may be being run in a background thread that is launched prior to the application's asynchronous operations. The run()
call may be kept running by creating an object of type io_service::work:

boost::asio::io_service io_service;
boost::asio::io_service::work work(io_service);
...

To effect a shutdown, the application will then need to call the io_service's stop() member function. This will cause the io_servicerun()
call to return as soon as possible, abandoning unfinished operations and without permitting ready handlers to be dispatched.

Alternatively, if the application requires that all operations and handlers be allowed to finish normally, the work object may be ex-
plicitly destroyed.

boost::asio::io_service io_service;
auto_ptr<boost::asio::io_service::work> work(

new boost::asio::io_service::work(io_service));
...
work.reset(); // Allow run() to exit.

io_service::add_service

Add a service object to the io_service.

template<
typename Service>

friend void add_service(
 io_service & ios,
 Service * svc);

This function is used to add a service to the io_service.

Parameters

ios The io_service object that owns the service.

svc The service object. On success, ownership of the service object is transferred to the io_service. When the io_service object
is destroyed, it will destroy the service object by performing:

delete static_cast<io_service::service*>(svc)

521

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::asio::service_already_exists Thrown if a service of the given type is already present in the io_service.

boost::asio::invalid_service_owner Thrown if the service's owning io_service is not the io_service object specified by the ios
parameter.

io_service::dispatch

Request the io_service to invoke the given handler.

template<
typename CompletionHandler>

void dispatch(
 CompletionHandler handler);

This function is used to ask the io_service to execute the given handler.

The io_service guarantees that the handler will only be called in a thread in which the run(), run_one(), poll() or poll_one() member
functions is currently being invoked. The handler may be executed inside this function if the guarantee can be met.

Parameters

handler The handler to be called. The io_service will make a copy of the handler object as required. The function signature of
the handler must be:

void handler();

io_service::has_service

Determine if an io_service contains a specified service type.

template<
typename Service>

friend bool has_service(
 io_service & ios);

This function is used to determine whether the io_service contains a service object corresponding to the given service type.

Parameters

ios The io_service object that owns the service.

Return Value

A boolean indicating whether the io_service contains the service.

io_service::io_service

Constructor.

522

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service();

io_service(
 std::size_t concurrency_hint);

io_service::io_service (1 of 2 overloads)

Constructor.

io_service();

io_service::io_service (2 of 2 overloads)

Constructor.

io_service(
 std::size_t concurrency_hint);

Construct with a hint about the required level of concurrency.

Parameters

concurrency_hint A suggestion to the implementation on how many threads it should allow to run simultaneously.

io_service::poll

Run the io_service's event processing loop to execute ready handlers.

std::size_t poll();

std::size_t poll(
 boost::system::error_code & ec);

io_service::poll (1 of 2 overloads)

Run the io_service's event processing loop to execute ready handlers.

std::size_t poll();

The poll() function runs handlers that are ready to run, without blocking, until the io_service has been stopped or there are no more
ready handlers.

Return Value

The number of handlers that were executed.

Exceptions

boost::system::system_error Thrown on failure.

io_service::poll (2 of 2 overloads)

Run the io_service's event processing loop to execute ready handlers.

523

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t poll(
 boost::system::error_code & ec);

The poll() function runs handlers that are ready to run, without blocking, until the io_service has been stopped or there are no more
ready handlers.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

io_service::poll_one

Run the io_service's event processing loop to execute one ready handler.

std::size_t poll_one();

std::size_t poll_one(
 boost::system::error_code & ec);

io_service::poll_one (1 of 2 overloads)

Run the io_service's event processing loop to execute one ready handler.

std::size_t poll_one();

The poll_one() function runs at most one handler that is ready to run, without blocking.

Return Value

The number of handlers that were executed.

Exceptions

boost::system::system_error Thrown on failure.

io_service::poll_one (2 of 2 overloads)

Run the io_service's event processing loop to execute one ready handler.

std::size_t poll_one(
 boost::system::error_code & ec);

The poll_one() function runs at most one handler that is ready to run, without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

524

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::post

Request the io_service to invoke the given handler and return immediately.

template<
typename CompletionHandler>

void post(
 CompletionHandler handler);

This function is used to ask the io_service to execute the given handler, but without allowing the io_service to call the handler from
inside this function.

The io_service guarantees that the handler will only be called in a thread in which the run(), run_one(), poll() or poll_one() member
functions is currently being invoked.

Parameters

handler The handler to be called. The io_service will make a copy of the handler object as required. The function signature of
the handler must be:

void handler();

io_service::reset

Reset the io_service in preparation for a subsequent run() invocation.

void reset();

This function must be called prior to any second or later set of invocations of the run(), run_one(), poll() or poll_one() functions
when a previous invocation of these functions returned due to the io_service being stopped or running out of work. This function
allows the io_service to reset any internal state, such as a "stopped" flag.

This function must not be called while there are any unfinished calls to the run(), run_one(), poll() or poll_one() functions.

io_service::run

Run the io_service's event processing loop.

std::size_t run();

std::size_t run(
 boost::system::error_code & ec);

io_service::run (1 of 2 overloads)

Run the io_service's event processing loop.

std::size_t run();

The run() function blocks until all work has finished and there are no more handlers to be dispatched, or until the io_service has been
stopped.

Multiple threads may call the run() function to set up a pool of threads from which the io_service may execute handlers. All threads
that are waiting in the pool are equivalent and the io_service may choose any one of them to invoke a handler.

525

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The run() function may be safely called again once it has completed only after a call to reset().

Return Value

The number of handlers that were executed.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The poll() function may also be used to dispatch ready handlers, but without blocking.

io_service::run (2 of 2 overloads)

Run the io_service's event processing loop.

std::size_t run(
 boost::system::error_code & ec);

The run() function blocks until all work has finished and there are no more handlers to be dispatched, or until the io_service has been
stopped.

Multiple threads may call the run() function to set up a pool of threads from which the io_service may execute handlers. All threads
that are waiting in the pool are equivalent and the io_service may choose any one of them to invoke a handler.

The run() function may be safely called again once it has completed only after a call to reset().

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

Remarks

The poll() function may also be used to dispatch ready handlers, but without blocking.

io_service::run_one

Run the io_service's event processing loop to execute at most one handler.

std::size_t run_one();

std::size_t run_one(
 boost::system::error_code & ec);

io_service::run_one (1 of 2 overloads)

Run the io_service's event processing loop to execute at most one handler.

std::size_t run_one();

The run_one() function blocks until one handler has been dispatched, or until the io_service has been stopped.

526

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of handlers that were executed.

Exceptions

boost::system::system_error Thrown on failure.

io_service::run_one (2 of 2 overloads)

Run the io_service's event processing loop to execute at most one handler.

std::size_t run_one(
 boost::system::error_code & ec);

The run_one() function blocks until one handler has been dispatched, or until the io_service has been stopped.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

io_service::stop

Stop the io_service's event processing loop.

void stop();

This function does not block, but instead simply signals the io_service to stop. All invocations of its run() or run_one() member
functions should return as soon as possible. Subsequent calls to run(), run_one(), poll() or poll_one() will return immediately until
reset() is called.

io_service::use_service

Obtain the service object corresponding to the given type.

template<
typename Service>

friend Service & use_service(
 io_service & ios);

This function is used to locate a service object that corresponds to the given service type. If there is no existing implementation of
the service, then the io_service will create a new instance of the service.

Parameters

ios The io_service object that owns the service.

Return Value

The service interface implementing the specified service type. Ownership of the service interface is not transferred to the caller.

io_service::wrap

Create a new handler that automatically dispatches the wrapped handler on the io_service.

527

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Handler>

unspecified wrap(
 Handler handler);

This function is used to create a new handler function object that, when invoked, will automatically pass the wrapped handler to the
io_service's dispatch function.

Parameters

handler The handler to be wrapped. The io_service will make a copy of the handler object as required. The function signature
of the handler must be:

void handler(A1 a1, ... An an);

Return Value

A function object that, when invoked, passes the wrapped handler to the io_service's dispatch function. Given a function object with
the signature:

R f(A1 a1, ... An an);

If this function object is passed to the wrap function like so:

io_service.wrap(f);

then the return value is a function object with the signature

void g(A1 a1, ... An an);

that, when invoked, executes code equivalent to:

io_service.dispatch(boost::bind(f, a1, ... an));

io_service::~io_service

Destructor.

~io_service();

io_service::id
Class used to uniquely identify a service.

528

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class id :
 noncopyable

Member Functions

DescriptionName

Constructor.id

io_service::id::id

Constructor.

id();

io_service::service
Base class for all io_service services.

class service :
 noncopyable

Member Functions

DescriptionName

Get the io_service object that owns the service.get_io_service

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Protected Member Functions

DescriptionName

Constructor.service

Destructor.~service

io_service::service::get_io_service

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

io_service::service::io_service

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

529

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & io_service();

io_service::service::service

Constructor.

service(
 boost::asio::io_service & owner);

Parameters

owner The io_service object that owns the service.

io_service::service::~service

Destructor.

virtual ~service();

io_service::strand
Provides serialised handler execution.

class strand

Member Functions

DescriptionName

Request the strand to invoke the given handler.dispatch

Get the io_service associated with the strand.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the strand.

io_service

Request the strand to invoke the given handler and return imme-
diately.

post

Constructor.strand

Create a new handler that automatically dispatches the wrapped
handler on the strand.

wrap

Destructor.~strand

The io_service::strand class provides the ability to post and dispatch handlers with the guarantee that none of those handlers will
execute concurrently.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

530

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::strand::dispatch

Request the strand to invoke the given handler.

template<
typename Handler>

void dispatch(
 Handler handler);

This function is used to ask the strand to execute the given handler.

The strand object guarantees that handlers posted or dispatched through the strand will not be executed concurrently. The handler
may be executed inside this function if the guarantee can be met. If this function is called from within a handler that was posted or
dispatched through the same strand, then the new handler will be executed immediately.

The strand's guarantee is in addition to the guarantee provided by the underlying io_service. The io_service guarantees that the
handler will only be called in a thread in which the io_service's run member function is currently being invoked.

Parameters

handler The handler to be called. The strand will make a copy of the handler object as required. The function signature of the
handler must be:

void handler();

io_service::strand::get_io_service

Get the io_service associated with the strand.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the strand uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the strand will use to dispatch handlers. Ownership is not transferred to the caller.

io_service::strand::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the strand.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the strand uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the strand will use to dispatch handlers. Ownership is not transferred to the caller.

io_service::strand::post

Request the strand to invoke the given handler and return immediately.

531

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Handler>

void post(
 Handler handler);

This function is used to ask the strand to execute the given handler, but without allowing the strand to call the handler from inside
this function.

The strand object guarantees that handlers posted or dispatched through the strand will not be executed concurrently. The strand's
guarantee is in addition to the guarantee provided by the underlying io_service. The io_service guarantees that the handler will only
be called in a thread in which the io_service's run member function is currently being invoked.

Parameters

handler The handler to be called. The strand will make a copy of the handler object as required. The function signature of the
handler must be:

void handler();

io_service::strand::strand

Constructor.

strand(
 boost::asio::io_service & io_service);

Constructs the strand.

Parameters

io_service The io_service object that the strand will use to dispatch handlers that are ready to be run.

io_service::strand::wrap

Create a new handler that automatically dispatches the wrapped handler on the strand.

template<
typename Handler>

unspecified wrap(
 Handler handler);

This function is used to create a new handler function object that, when invoked, will automatically pass the wrapped handler to the
strand's dispatch function.

Parameters

handler The handler to be wrapped. The strand will make a copy of the handler object as required. The function signature of
the handler must be:

void handler(A1 a1, ... An an);

532

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A function object that, when invoked, passes the wrapped handler to the strand's dispatch function. Given a function object with the
signature:

R f(A1 a1, ... An an);

If this function object is passed to the wrap function like so:

strand.wrap(f);

then the return value is a function object with the signature

void g(A1 a1, ... An an);

that, when invoked, executes code equivalent to:

strand.dispatch(boost::bind(f, a1, ... an));

io_service::strand::~strand

Destructor.

~strand();

Destroys a strand.

Handlers posted through the strand that have not yet been invoked will still be dispatched in a way that meets the guarantee of non-
concurrency.

io_service::work
Class to inform the io_service when it has work to do.

class work

Member Functions

DescriptionName

Get the io_service associated with the work.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the work.

io_service

Constructor notifies the io_service that work is starting.

Copy constructor notifies the io_service that work is starting.

work

Destructor notifies the io_service that the work is complete.~work

The work class is used to inform the io_service when work starts and finishes. This ensures that the io_service's run() function will
not exit while work is underway, and that it does exit when there is no unfinished work remaining.

533

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The work class is copy-constructible so that it may be used as a data member in a handler class. It is not assignable.

io_service::work::get_io_service

Get the io_service associated with the work.

boost::asio::io_service & get_io_service();

io_service::work::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the work.

boost::asio::io_service & io_service();

io_service::work::work

Constructor notifies the io_service that work is starting.

work(
 boost::asio::io_service & io_service);

Copy constructor notifies the io_service that work is starting.

work(
const work & other);

io_service::work::work (1 of 2 overloads)

Constructor notifies the io_service that work is starting.

work(
 boost::asio::io_service & io_service);

The constructor is used to inform the io_service that some work has begun. This ensures that the io_service's run() function will not
exit while the work is underway.

io_service::work::work (2 of 2 overloads)

Copy constructor notifies the io_service that work is starting.

work(
const work & other);

The constructor is used to inform the io_service that some work has begun. This ensures that the io_service's run() function will not
exit while the work is underway.

io_service::work::~work

Destructor notifies the io_service that the work is complete.

~work();

The destructor is used to inform the io_service that some work has finished. Once the count of unfinished work reaches zero, the
io_service's run() function is permitted to exit.

534

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address
Implements version-independent IP addresses.

class address

Member Functions

DescriptionName

Default constructor.

Construct an address from an IPv4 address.

Construct an address from an IPv6 address.

Copy constructor.

address

Create an address from an IPv4 address string in dotted decimal
form, or from an IPv6 address in hexadecimal notation.

from_string

Get whether the address is an IP version 4 address.is_v4

Get whether the address is an IP version 6 address.is_v6

Assign from another address.

Assign from an IPv4 address.

Assign from an IPv6 address.

operator=

Get the address as a string in dotted decimal format.to_string

Get the address as an IP version 4 address.to_v4

Get the address as an IP version 6 address.to_v6

Friends

DescriptionName

Compare two addresses for inequality.operator!=

Compare addresses for ordering.operator<

Compare two addresses for equality.operator==

Related Functions

DescriptionName

Output an address as a string.operator<<

The ip::address class provides the ability to use either IP version 4 or version 6 addresses.

535

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::address::address

Default constructor.

address();

Construct an address from an IPv4 address.

address(
const boost::asio::ip::address_v4 & ipv4_address);

Construct an address from an IPv6 address.

address(
const boost::asio::ip::address_v6 & ipv6_address);

Copy constructor.

address(
const address & other);

ip::address::address (1 of 4 overloads)

Default constructor.

address();

ip::address::address (2 of 4 overloads)

Construct an address from an IPv4 address.

address(
const boost::asio::ip::address_v4 & ipv4_address);

ip::address::address (3 of 4 overloads)

Construct an address from an IPv6 address.

address(
const boost::asio::ip::address_v6 & ipv6_address);

ip::address::address (4 of 4 overloads)

Copy constructor.

536

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address(
const address & other);

ip::address::from_string

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const char * str);

static address from_string(
const char * str,

 boost::system::error_code & ec);

static address from_string(
const std::string & str);

static address from_string(
const std::string & str,

 boost::system::error_code & ec);

ip::address::from_string (1 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const char * str);

ip::address::from_string (2 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const char * str,

 boost::system::error_code & ec);

ip::address::from_string (3 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const std::string & str);

ip::address::from_string (4 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const std::string & str,

 boost::system::error_code & ec);

ip::address::is_v4

Get whether the address is an IP version 4 address.

537

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool is_v4() const;

ip::address::is_v6

Get whether the address is an IP version 6 address.

bool is_v6() const;

ip::address::operator!=

Compare two addresses for inequality.

friend bool operator!=(
const address & a1,
const address & a2);

ip::address::operator<

Compare addresses for ordering.

friend bool operator<(
const address & a1,
const address & a2);

ip::address::operator<<

Output an address as a string.

template<
typename Elem,
typename Traits>

std::basic_ostream< Elem, Traits > & operator<<(
 std::basic_ostream< Elem, Traits > & os,

const address & addr);

Used to output a human-readable string for a specified address.

Parameters

os The output stream to which the string will be written.

addr The address to be written.

Return Value

The output stream.

ip::address::operator=

Assign from another address.

address & operator=(
const address & other);

Assign from an IPv4 address.

538

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address & operator=(
const boost::asio::ip::address_v4 & ipv4_address);

Assign from an IPv6 address.

address & operator=(
const boost::asio::ip::address_v6 & ipv6_address);

ip::address::operator= (1 of 3 overloads)

Assign from another address.

address & operator=(
const address & other);

ip::address::operator= (2 of 3 overloads)

Assign from an IPv4 address.

address & operator=(
const boost::asio::ip::address_v4 & ipv4_address);

ip::address::operator= (3 of 3 overloads)

Assign from an IPv6 address.

address & operator=(
const boost::asio::ip::address_v6 & ipv6_address);

ip::address::operator==

Compare two addresses for equality.

friend bool operator==(
const address & a1,
const address & a2);

ip::address::to_string

Get the address as a string in dotted decimal format.

std::string to_string() const;

std::string to_string(
 boost::system::error_code & ec) const;

ip::address::to_string (1 of 2 overloads)

Get the address as a string in dotted decimal format.

539

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string to_string() const;

ip::address::to_string (2 of 2 overloads)

Get the address as a string in dotted decimal format.

std::string to_string(
 boost::system::error_code & ec) const;

ip::address::to_v4

Get the address as an IP version 4 address.

boost::asio::ip::address_v4 to_v4() const;

ip::address::to_v6

Get the address as an IP version 6 address.

boost::asio::ip::address_v6 to_v6() const;

ip::address_v4
Implements IP version 4 style addresses.

class address_v4

Types

DescriptionName

The type used to represent an address as an array of bytes.bytes_type

540

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an address from raw bytes.

Construct an address from a unsigned long in host byte order.

Copy constructor.

address_v4

Obtain an address object that represents any address.any

Obtain an address object that represents the broadcast address.

Obtain an address object that represents the broadcast address
that corresponds to the specified address and netmask.

broadcast

Create an address from an IP address string in dotted decimal
form.

from_string

Determine whether the address is a class A address.is_class_a

Determine whether the address is a class B address.is_class_b

Determine whether the address is a class C address.is_class_c

Determine whether the address is a multicast address.is_multicast

Obtain an address object that represents the loopback address.loopback

Obtain the netmask that corresponds to the address, based on
its address class.

netmask

Assign from another address.operator=

Get the address in bytes.to_bytes

Get the address as a string in dotted decimal format.to_string

Get the address as an unsigned long in host byte order.to_ulong

541

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two addresses for inequality.operator!=

Compare addresses for ordering.operator<

Compare addresses for ordering.operator<=

Compare two addresses for equality.operator==

Compare addresses for ordering.operator>

Compare addresses for ordering.operator>=

Related Functions

DescriptionName

Output an address as a string.operator<<

The ip::address_v4 class provides the ability to use and manipulate IP version 4 addresses.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::address_v4::address_v4

Default constructor.

address_v4();

Construct an address from raw bytes.

address_v4(
const bytes_type & bytes);

Construct an address from a unsigned long in host byte order.

address_v4(
unsigned long addr);

Copy constructor.

address_v4(
const address_v4 & other);

ip::address_v4::address_v4 (1 of 4 overloads)

Default constructor.

542

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address_v4();

ip::address_v4::address_v4 (2 of 4 overloads)

Construct an address from raw bytes.

address_v4(
const bytes_type & bytes);

ip::address_v4::address_v4 (3 of 4 overloads)

Construct an address from a unsigned long in host byte order.

address_v4(
unsigned long addr);

ip::address_v4::address_v4 (4 of 4 overloads)

Copy constructor.

address_v4(
const address_v4 & other);

ip::address_v4::any

Obtain an address object that represents any address.

static address_v4 any();

ip::address_v4::broadcast

Obtain an address object that represents the broadcast address.

static address_v4 broadcast();

Obtain an address object that represents the broadcast address that corresponds to the specified address and netmask.

static address_v4 broadcast(
const address_v4 & addr,
const address_v4 & mask);

ip::address_v4::broadcast (1 of 2 overloads)

Obtain an address object that represents the broadcast address.

static address_v4 broadcast();

ip::address_v4::broadcast (2 of 2 overloads)

Obtain an address object that represents the broadcast address that corresponds to the specified address and netmask.

543

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static address_v4 broadcast(
const address_v4 & addr,
const address_v4 & mask);

ip::address_v4::bytes_type

The type used to represent an address as an array of bytes.

typedef boost::array< unsigned char, 4 > bytes_type;

ip::address_v4::from_string

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const char * str);

static address_v4 from_string(
const char * str,

 boost::system::error_code & ec);

static address_v4 from_string(
const std::string & str);

static address_v4 from_string(
const std::string & str,

 boost::system::error_code & ec);

ip::address_v4::from_string (1 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const char * str);

ip::address_v4::from_string (2 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const char * str,

 boost::system::error_code & ec);

ip::address_v4::from_string (3 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const std::string & str);

ip::address_v4::from_string (4 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

544

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static address_v4 from_string(
const std::string & str,

 boost::system::error_code & ec);

ip::address_v4::is_class_a

Determine whether the address is a class A address.

bool is_class_a() const;

ip::address_v4::is_class_b

Determine whether the address is a class B address.

bool is_class_b() const;

ip::address_v4::is_class_c

Determine whether the address is a class C address.

bool is_class_c() const;

ip::address_v4::is_multicast

Determine whether the address is a multicast address.

bool is_multicast() const;

ip::address_v4::loopback

Obtain an address object that represents the loopback address.

static address_v4 loopback();

ip::address_v4::netmask

Obtain the netmask that corresponds to the address, based on its address class.

static address_v4 netmask(
const address_v4 & addr);

ip::address_v4::operator!=

Compare two addresses for inequality.

545

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend bool operator!=(
const address_v4 & a1,
const address_v4 & a2);

ip::address_v4::operator<

Compare addresses for ordering.

friend bool operator<(
const address_v4 & a1,
const address_v4 & a2);

ip::address_v4::operator<<

Output an address as a string.

template<
typename Elem,
typename Traits>

std::basic_ostream< Elem, Traits > & operator<<(
 std::basic_ostream< Elem, Traits > & os,

const address_v4 & addr);

Used to output a human-readable string for a specified address.

Parameters

os The output stream to which the string will be written.

addr The address to be written.

Return Value

The output stream.

ip::address_v4::operator<=

Compare addresses for ordering.

friend bool operator<=(
const address_v4 & a1,
const address_v4 & a2);

ip::address_v4::operator=

Assign from another address.

address_v4 & operator=(
const address_v4 & other);

ip::address_v4::operator==

Compare two addresses for equality.

546

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend bool operator==(
const address_v4 & a1,
const address_v4 & a2);

ip::address_v4::operator>

Compare addresses for ordering.

friend bool operator>(
const address_v4 & a1,
const address_v4 & a2);

ip::address_v4::operator>=

Compare addresses for ordering.

friend bool operator>=(
const address_v4 & a1,
const address_v4 & a2);

ip::address_v4::to_bytes

Get the address in bytes.

bytes_type to_bytes() const;

ip::address_v4::to_string

Get the address as a string in dotted decimal format.

std::string to_string() const;

std::string to_string(
 boost::system::error_code & ec) const;

ip::address_v4::to_string (1 of 2 overloads)

Get the address as a string in dotted decimal format.

std::string to_string() const;

ip::address_v4::to_string (2 of 2 overloads)

Get the address as a string in dotted decimal format.

std::string to_string(
 boost::system::error_code & ec) const;

ip::address_v4::to_ulong

Get the address as an unsigned long in host byte order.

547

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unsigned long to_ulong() const;

ip::address_v6
Implements IP version 6 style addresses.

class address_v6

Types

DescriptionName

The type used to represent an address as an array of bytes.bytes_type

548

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an address from raw bytes and scope ID.

Copy constructor.

address_v6

Obtain an address object that represents any address.any

Create an address from an IP address string.from_string

Determine whether the address is link local.is_link_local

Determine whether the address is a loopback address.is_loopback

Determine whether the address is a multicast address.is_multicast

Determine whether the address is a global multicast address.is_multicast_global

Determine whether the address is a link-local multicast address.is_multicast_link_local

Determine whether the address is a node-local multicast address.is_multicast_node_local

Determine whether the address is a org-local multicast address.is_multicast_org_local

Determine whether the address is a site-local multicast address.is_multicast_site_local

Determine whether the address is site local.is_site_local

Determine whether the address is unspecified.is_unspecified

Determine whether the address is an IPv4-compatible address.is_v4_compatible

Determine whether the address is a mapped IPv4 address.is_v4_mapped

Obtain an address object that represents the loopback address.loopback

Assign from another address.operator=

The scope ID of the address.scope_id

Get the address in bytes.to_bytes

Get the address as a string.to_string

Converts an IPv4-mapped or IPv4-compatible address to an
IPv4 address.

to_v4

Create an IPv4-compatible IPv6 address.v4_compatible

Create an IPv4-mapped IPv6 address.v4_mapped

549

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two addresses for inequality.operator!=

Compare addresses for ordering.operator<

Compare addresses for ordering.operator<=

Compare two addresses for equality.operator==

Compare addresses for ordering.operator>

Compare addresses for ordering.operator>=

Related Functions

DescriptionName

Output an address as a string.operator<<

The ip::address_v6 class provides the ability to use and manipulate IP version 6 addresses.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::address_v6::address_v6

Default constructor.

address_v6();

Construct an address from raw bytes and scope ID.

address_v6(
const bytes_type & bytes,
unsigned long scope_id = 0);

Copy constructor.

address_v6(
const address_v6 & other);

ip::address_v6::address_v6 (1 of 3 overloads)

Default constructor.

550

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address_v6();

ip::address_v6::address_v6 (2 of 3 overloads)

Construct an address from raw bytes and scope ID.

address_v6(
const bytes_type & bytes,
unsigned long scope_id = 0);

ip::address_v6::address_v6 (3 of 3 overloads)

Copy constructor.

address_v6(
const address_v6 & other);

ip::address_v6::any

Obtain an address object that represents any address.

static address_v6 any();

ip::address_v6::bytes_type

The type used to represent an address as an array of bytes.

typedef boost::array< unsigned char, 16 > bytes_type;

ip::address_v6::from_string

Create an address from an IP address string.

static address_v6 from_string(
const char * str);

static address_v6 from_string(
const char * str,

 boost::system::error_code & ec);

static address_v6 from_string(
const std::string & str);

static address_v6 from_string(
const std::string & str,

 boost::system::error_code & ec);

ip::address_v6::from_string (1 of 4 overloads)

Create an address from an IP address string.

551

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static address_v6 from_string(
const char * str);

ip::address_v6::from_string (2 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const char * str,

 boost::system::error_code & ec);

ip::address_v6::from_string (3 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const std::string & str);

ip::address_v6::from_string (4 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const std::string & str,

 boost::system::error_code & ec);

ip::address_v6::is_link_local

Determine whether the address is link local.

bool is_link_local() const;

ip::address_v6::is_loopback

Determine whether the address is a loopback address.

bool is_loopback() const;

ip::address_v6::is_multicast

Determine whether the address is a multicast address.

bool is_multicast() const;

ip::address_v6::is_multicast_global

Determine whether the address is a global multicast address.

552

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool is_multicast_global() const;

ip::address_v6::is_multicast_link_local

Determine whether the address is a link-local multicast address.

bool is_multicast_link_local() const;

ip::address_v6::is_multicast_node_local

Determine whether the address is a node-local multicast address.

bool is_multicast_node_local() const;

ip::address_v6::is_multicast_org_local

Determine whether the address is a org-local multicast address.

bool is_multicast_org_local() const;

ip::address_v6::is_multicast_site_local

Determine whether the address is a site-local multicast address.

bool is_multicast_site_local() const;

ip::address_v6::is_site_local

Determine whether the address is site local.

bool is_site_local() const;

ip::address_v6::is_unspecified

Determine whether the address is unspecified.

bool is_unspecified() const;

ip::address_v6::is_v4_compatible

Determine whether the address is an IPv4-compatible address.

bool is_v4_compatible() const;

ip::address_v6::is_v4_mapped

Determine whether the address is a mapped IPv4 address.

553

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool is_v4_mapped() const;

ip::address_v6::loopback

Obtain an address object that represents the loopback address.

static address_v6 loopback();

ip::address_v6::operator!=

Compare two addresses for inequality.

friend bool operator!=(
const address_v6 & a1,
const address_v6 & a2);

ip::address_v6::operator<

Compare addresses for ordering.

friend bool operator<(
const address_v6 & a1,
const address_v6 & a2);

ip::address_v6::operator<<

Output an address as a string.

template<
typename Elem,
typename Traits>

std::basic_ostream< Elem, Traits > & operator<<(
 std::basic_ostream< Elem, Traits > & os,

const address_v6 & addr);

Used to output a human-readable string for a specified address.

Parameters

os The output stream to which the string will be written.

addr The address to be written.

Return Value

The output stream.

ip::address_v6::operator<=

Compare addresses for ordering.

554

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend bool operator<=(
const address_v6 & a1,
const address_v6 & a2);

ip::address_v6::operator=

Assign from another address.

address_v6 & operator=(
const address_v6 & other);

ip::address_v6::operator==

Compare two addresses for equality.

friend bool operator==(
const address_v6 & a1,
const address_v6 & a2);

ip::address_v6::operator>

Compare addresses for ordering.

friend bool operator>(
const address_v6 & a1,
const address_v6 & a2);

ip::address_v6::operator>=

Compare addresses for ordering.

friend bool operator>=(
const address_v6 & a1,
const address_v6 & a2);

ip::address_v6::scope_id

The scope ID of the address.

unsigned long scope_id() const;

void scope_id(
unsigned long id);

ip::address_v6::scope_id (1 of 2 overloads)

The scope ID of the address.

unsigned long scope_id() const;

Returns the scope ID associated with the IPv6 address.

555

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v6::scope_id (2 of 2 overloads)

The scope ID of the address.

void scope_id(
unsigned long id);

Modifies the scope ID associated with the IPv6 address.

ip::address_v6::to_bytes

Get the address in bytes.

bytes_type to_bytes() const;

ip::address_v6::to_string

Get the address as a string.

std::string to_string() const;

std::string to_string(
 boost::system::error_code & ec) const;

ip::address_v6::to_string (1 of 2 overloads)

Get the address as a string.

std::string to_string() const;

ip::address_v6::to_string (2 of 2 overloads)

Get the address as a string.

std::string to_string(
 boost::system::error_code & ec) const;

ip::address_v6::to_v4

Converts an IPv4-mapped or IPv4-compatible address to an IPv4 address.

address_v4 to_v4() const;

ip::address_v6::v4_compatible

Create an IPv4-compatible IPv6 address.

static address_v6 v4_compatible(
const address_v4 & addr);

ip::address_v6::v4_mapped

Create an IPv4-mapped IPv6 address.

556

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static address_v6 v4_mapped(
const address_v4 & addr);

ip::basic_endpoint
Describes an endpoint for a version-independent IP socket.

template<
typename InternetProtocol>

class basic_endpoint

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

557

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

558

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::basic_endpoint::address

Get the IP address associated with the endpoint.

boost::asio::ip::address address() const;

Set the IP address associated with the endpoint.

void address(
const boost::asio::ip::address & addr);

ip::basic_endpoint::address (1 of 2 overloads)

Get the IP address associated with the endpoint.

boost::asio::ip::address address() const;

ip::basic_endpoint::address (2 of 2 overloads)

Set the IP address associated with the endpoint.

void address(
const boost::asio::ip::address & addr);

ip::basic_endpoint::basic_endpoint

Default constructor.

basic_endpoint();

Construct an endpoint using a port number, specified in the host's byte order. The IP address will be the any address (i.e. INAD-
DR_ANY or in6addr_any). This constructor would typically be used for accepting new connections.

basic_endpoint(
const InternetProtocol & protocol,
unsigned short port_num);

Construct an endpoint using a port number and an IP address. This constructor may be used for accepting connections on a specific
interface or for making a connection to a remote endpoint.

basic_endpoint(
const boost::asio::ip::address & addr,
unsigned short port_num);

Copy constructor.

559

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_endpoint(
const basic_endpoint & other);

ip::basic_endpoint::basic_endpoint (1 of 4 overloads)

Default constructor.

basic_endpoint();

ip::basic_endpoint::basic_endpoint (2 of 4 overloads)

Construct an endpoint using a port number, specified in the host's byte order. The IP address will be the any address (i.e. INAD-
DR_ANY or in6addr_any). This constructor would typically be used for accepting new connections.

basic_endpoint(
const InternetProtocol & protocol,
unsigned short port_num);

Examples

To initialise an IPv4 TCP endpoint for port 1234, use:

boost::asio::ip::tcp::endpoint ep(boost::asio::ip::tcp::v4(), 1234);

To specify an IPv6 UDP endpoint for port 9876, use:

boost::asio::ip::udp::endpoint ep(boost::asio::ip::udp::v6(), 9876);

ip::basic_endpoint::basic_endpoint (3 of 4 overloads)

Construct an endpoint using a port number and an IP address. This constructor may be used for accepting connections on a specific
interface or for making a connection to a remote endpoint.

basic_endpoint(
const boost::asio::ip::address & addr,
unsigned short port_num);

ip::basic_endpoint::basic_endpoint (4 of 4 overloads)

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

ip::basic_endpoint::capacity

Get the capacity of the endpoint in the native type.

std::size_t capacity() const;

ip::basic_endpoint::data

Get the underlying endpoint in the native type.

560

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

data_type * data();

const data_type * data() const;

ip::basic_endpoint::data (1 of 2 overloads)

Get the underlying endpoint in the native type.

data_type * data();

ip::basic_endpoint::data (2 of 2 overloads)

Get the underlying endpoint in the native type.

const data_type * data() const;

ip::basic_endpoint::data_type

The type of the endpoint structure. This type is dependent on the underlying implementation of the socket layer.

typedef implementation_defined data_type;

ip::basic_endpoint::operator!=

Compare two endpoints for inequality.

friend bool operator!=(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

ip::basic_endpoint::operator<

Compare endpoints for ordering.

friend bool operator<(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

ip::basic_endpoint::operator<<

Output an endpoint as a string.

std::basic_ostream< Elem, Traits > & operator<<(
 std::basic_ostream< Elem, Traits > & os,

const basic_endpoint< InternetProtocol > & endpoint);

Used to output a human-readable string for a specified endpoint.

Parameters

os The output stream to which the string will be written.

endpoint The endpoint to be written.

561

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The output stream.

ip::basic_endpoint::operator=

Assign from another endpoint.

basic_endpoint & operator=(
const basic_endpoint & other);

ip::basic_endpoint::operator==

Compare two endpoints for equality.

friend bool operator==(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

ip::basic_endpoint::port

Get the port associated with the endpoint. The port number is always in the host's byte order.

unsigned short port() const;

Set the port associated with the endpoint. The port number is always in the host's byte order.

void port(
unsigned short port_num);

ip::basic_endpoint::port (1 of 2 overloads)

Get the port associated with the endpoint. The port number is always in the host's byte order.

unsigned short port() const;

ip::basic_endpoint::port (2 of 2 overloads)

Set the port associated with the endpoint. The port number is always in the host's byte order.

void port(
unsigned short port_num);

ip::basic_endpoint::protocol

The protocol associated with the endpoint.

protocol_type protocol() const;

ip::basic_endpoint::protocol_type

The protocol type associated with the endpoint.

562

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef InternetProtocol protocol_type;

ip::basic_endpoint::resize

Set the underlying size of the endpoint in the native type.

void resize(
 std::size_t size);

ip::basic_endpoint::size

Get the underlying size of the endpoint in the native type.

std::size_t size() const;

ip::basic_resolver
Provides endpoint resolution functionality.

template<
typename InternetProtocol,
typename ResolverService = resolver_service<InternetProtocol>>

class basic_resolver :
public basic_io_object< ResolverService >

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

563

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::basic_resolver::async_resolve

Asynchronously perform forward resolution of a query to a list of entries.

template<
typename ResolveHandler>

void async_resolve(
const query & q,

 ResolveHandler handler);

Asynchronously perform reverse resolution of an endpoint to a list of entries.

564

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ResolveHandler>

void async_resolve(
const endpoint_type & e,

 ResolveHandler handler);

ip::basic_resolver::async_resolve (1 of 2 overloads)

Asynchronously perform forward resolution of a query to a list of entries.

template<
typename ResolveHandler>

void async_resolve(
const query & q,

 ResolveHandler handler);

This function is used to asynchronously resolve a query into a list of endpoint entries.

Parameters

q A query object that determines what endpoints will be returned.

handler The handler to be called when the resolve operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 resolver::iterator iterator // Forward-only iterator that can
// be used to traverse the list
// of endpoint entries.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

A default constructed iterator represents the end of the list.

A successful resolve operation is guaranteed to pass at least one entry to the handler.

ip::basic_resolver::async_resolve (2 of 2 overloads)

Asynchronously perform reverse resolution of an endpoint to a list of entries.

template<
typename ResolveHandler>

void async_resolve(
const endpoint_type & e,

 ResolveHandler handler);

This function is used to asynchronously resolve an endpoint into a list of endpoint entries.

Parameters

e An endpoint object that determines what endpoints will be returned.

565

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

handler The handler to be called when the resolve operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 resolver::iterator iterator // Forward-only iterator that can
// be used to traverse the list
// of endpoint entries.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

A default constructed iterator represents the end of the list.

A successful resolve operation is guaranteed to pass at least one entry to the handler.

ip::basic_resolver::basic_resolver

Constructor.

basic_resolver(
 boost::asio::io_service & io_service);

This constructor creates a basic_resolver.

Parameters

io_service The io_service object that the resolver will use to dispatch handlers for any asynchronous operations performed
on the timer.

ip::basic_resolver::cancel

Cancel any asynchronous operations that are waiting on the resolver.

void cancel();

This function forces the completion of any pending asynchronous operations on the host resolver. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

ip::basic_resolver::endpoint_type

The endpoint type.

typedef InternetProtocol::endpoint endpoint_type;

ip::basic_resolver::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

566

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

ip::basic_resolver::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

ip::basic_resolver::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

ip::basic_resolver::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

ip::basic_resolver::iterator

The iterator type.

typedef InternetProtocol::resolver_iterator iterator;

ip::basic_resolver::protocol_type

The protocol type.

typedef InternetProtocol protocol_type;

ip::basic_resolver::query

The query type.

567

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef InternetProtocol::resolver_query query;

ip::basic_resolver::resolve

Perform forward resolution of a query to a list of entries.

iterator resolve(
const query & q);

iterator resolve(
const query & q,

 boost::system::error_code & ec);

Perform reverse resolution of an endpoint to a list of entries.

iterator resolve(
const endpoint_type & e);

iterator resolve(
const endpoint_type & e,

 boost::system::error_code & ec);

ip::basic_resolver::resolve (1 of 4 overloads)

Perform forward resolution of a query to a list of entries.

iterator resolve(
const query & q);

This function is used to resolve a query into a list of endpoint entries.

Parameters

q A query object that determines what endpoints will be returned.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::resolve (2 of 4 overloads)

Perform forward resolution of a query to a list of entries.

568

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

iterator resolve(
const query & q,

 boost::system::error_code & ec);

This function is used to resolve a query into a list of endpoint entries.

Parameters

q A query object that determines what endpoints will be returned.

ec Set to indicate what error occurred, if any.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries. Returns a default constructed iterator if an error occurs.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::resolve (3 of 4 overloads)

Perform reverse resolution of an endpoint to a list of entries.

iterator resolve(
const endpoint_type & e);

This function is used to resolve an endpoint into a list of endpoint entries.

Parameters

e An endpoint object that determines what endpoints will be returned.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::resolve (4 of 4 overloads)

Perform reverse resolution of an endpoint to a list of entries.

iterator resolve(
const endpoint_type & e,

 boost::system::error_code & ec);

This function is used to resolve an endpoint into a list of endpoint entries.

569

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

e An endpoint object that determines what endpoints will be returned.

ec Set to indicate what error occurred, if any.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries. Returns a default constructed iterator if an error occurs.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

ip::basic_resolver::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef ResolverService service_type;

ip::basic_resolver_entry
An entry produced by a resolver.

template<
typename InternetProtocol>

class basic_resolver_entry

Types

DescriptionName

The endpoint type associated with the endpoint entry.endpoint_type

The protocol type associated with the endpoint entry.protocol_type

570

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct with specified endpoint, host name and service name.

basic_resolver_entry

Get the endpoint associated with the entry.endpoint

Get the host name associated with the entry.host_name

Convert to the endpoint associated with the entry.operator endpoint_type

Get the service name associated with the entry.service_name

The ip::basic_resolver_entry class template describes an entry as returned by a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::basic_resolver_entry::basic_resolver_entry

Default constructor.

basic_resolver_entry();

Construct with specified endpoint, host name and service name.

basic_resolver_entry(
const endpoint_type & endpoint,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_entry::basic_resolver_entry (1 of 2 overloads)

Default constructor.

basic_resolver_entry();

ip::basic_resolver_entry::basic_resolver_entry (2 of 2 overloads)

Construct with specified endpoint, host name and service name.

basic_resolver_entry(
const endpoint_type & endpoint,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_entry::endpoint

Get the endpoint associated with the entry.

571

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint_type endpoint() const;

ip::basic_resolver_entry::endpoint_type

The endpoint type associated with the endpoint entry.

typedef InternetProtocol::endpoint endpoint_type;

ip::basic_resolver_entry::host_name

Get the host name associated with the entry.

std::string host_name() const;

ip::basic_resolver_entry::operator endpoint_type

Convert to the endpoint associated with the entry.

operator endpoint_type() const;

ip::basic_resolver_entry::protocol_type

The protocol type associated with the endpoint entry.

typedef InternetProtocol protocol_type;

ip::basic_resolver_entry::service_name

Get the service name associated with the entry.

std::string service_name() const;

ip::basic_resolver_iterator
An iterator over the entries produced by a resolver.

template<
typename InternetProtocol>

class basic_resolver_iterator

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

create

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

572

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::basic_resolver_iterator::basic_resolver_iterator

Default constructor creates an end iterator.

basic_resolver_iterator();

ip::basic_resolver_iterator::create

Create an iterator from an addrinfo list returned by getaddrinfo.

static basic_resolver_iterator create(
 boost::asio::detail::addrinfo_type * address_info,

const std::string & host_name,
const std::string & service_name);

Create an iterator from an endpoint, host name and service name.

static basic_resolver_iterator create(
const typename InternetProtocol::endpoint & endpoint,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_iterator::create (1 of 2 overloads)

Create an iterator from an addrinfo list returned by getaddrinfo.

static basic_resolver_iterator create(
 boost::asio::detail::addrinfo_type * address_info,

const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_iterator::create (2 of 2 overloads)

Create an iterator from an endpoint, host name and service name.

static basic_resolver_iterator create(
const typename InternetProtocol::endpoint & endpoint,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_query
An query to be passed to a resolver.

573

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename InternetProtocol>

class basic_resolver_query :
public ip::resolver_query_base

Types

DescriptionName

The protocol type associated with the endpoint query.protocol_type

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

574

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::basic_resolver_query::address_configured

Inherited from ip::resolver_query_base.

Only return IPv4 addresses if a non-loopback IPv4 address is configured for the system. Only return IPv6 addresses if a non-loopback
IPv6 address is configured for the system.

static const int address_configured = implementation_defined;

ip::basic_resolver_query::all_matching

Inherited from ip::resolver_query_base.

If used with v4_mapped, return all matching IPv6 and IPv4 addresses.

static const int all_matching = implementation_defined;

ip::basic_resolver_query::basic_resolver_query

Construct with specified service name for any protocol.

575

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_resolver_query(
const std::string & service_name,
int flags = passive|address_configured);

Construct with specified service name for a given protocol.

basic_resolver_query(
const protocol_type & protocol,
const std::string & service_name,
int flags = passive|address_configured);

Construct with specified host name and service name for any protocol.

basic_resolver_query(
const std::string & host_name,
const std::string & service_name,
int flags = address_configured);

Construct with specified host name and service name for a given protocol.

basic_resolver_query(
const protocol_type & protocol,
const std::string & host_name,
const std::string & service_name,
int flags = address_configured);

ip::basic_resolver_query::basic_resolver_query (1 of 4 overloads)

Construct with specified service name for any protocol.

basic_resolver_query(
const std::string & service_name,
int flags = passive|address_configured);

ip::basic_resolver_query::basic_resolver_query (2 of 4 overloads)

Construct with specified service name for a given protocol.

basic_resolver_query(
const protocol_type & protocol,
const std::string & service_name,
int flags = passive|address_configured);

ip::basic_resolver_query::basic_resolver_query (3 of 4 overloads)

Construct with specified host name and service name for any protocol.

basic_resolver_query(
const std::string & host_name,
const std::string & service_name,
int flags = address_configured);

ip::basic_resolver_query::basic_resolver_query (4 of 4 overloads)

Construct with specified host name and service name for a given protocol.

576

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_resolver_query(
const protocol_type & protocol,
const std::string & host_name,
const std::string & service_name,
int flags = address_configured);

ip::basic_resolver_query::canonical_name

Inherited from ip::resolver_query_base.

Determine the canonical name of the host specified in the query.

static const int canonical_name = implementation_defined;

ip::basic_resolver_query::hints

Get the hints associated with the query.

const boost::asio::detail::addrinfo_type & hints() const;

ip::basic_resolver_query::host_name

Get the host name associated with the query.

std::string host_name() const;

ip::basic_resolver_query::numeric_host

Inherited from ip::resolver_query_base.

Host name should be treated as a numeric string defining an IPv4 or IPv6 address and no name resolution should be attempted.

static const int numeric_host = implementation_defined;

ip::basic_resolver_query::numeric_service

Inherited from ip::resolver_query_base.

Service name should be treated as a numeric string defining a port number and no name resolution should be attempted.

static const int numeric_service = implementation_defined;

ip::basic_resolver_query::passive

Inherited from ip::resolver_query_base.

Indicate that returned endpoint is intended for use as a locally bound socket endpoint.

static const int passive = implementation_defined;

ip::basic_resolver_query::protocol_type

The protocol type associated with the endpoint query.

577

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef InternetProtocol protocol_type;

ip::basic_resolver_query::service_name

Get the service name associated with the query.

std::string service_name() const;

ip::basic_resolver_query::v4_mapped

Inherited from ip::resolver_query_base.

If the query protocol family is specified as IPv6, return IPv4-mapped IPv6 addresses on finding no IPv6 addresses.

static const int v4_mapped = implementation_defined;

ip::host_name
Get the current host name.

std::string host_name();

std::string host_name(
 boost::system::error_code & ec);

ip::host_name (1 of 2 overloads)

Get the current host name.

std::string host_name();

ip::host_name (2 of 2 overloads)

Get the current host name.

std::string host_name(
 boost::system::error_code & ec);

ip::icmp
Encapsulates the flags needed for ICMP.

578

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class icmp

Types

DescriptionName

The type of a ICMP endpoint.endpoint

The ICMP resolver type.resolver

The type of a resolver iterator.resolver_iterator

The type of a resolver query.resolver_query

The ICMP socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

Construct to represent the IPv4 ICMP protocol.v4

Construct to represent the IPv6 ICMP protocol.v6

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The ip::icmp class contains flags necessary for ICMP sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

ip::icmp::endpoint

The type of a ICMP endpoint.

579

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_endpoint< icmp > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

580

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::icmp::family

Obtain an identifier for the protocol family.

int family() const;

ip::icmp::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const icmp & p1,
const icmp & p2);

ip::icmp::operator==

Compare two protocols for equality.

friend bool operator==(
const icmp & p1,
const icmp & p2);

ip::icmp::protocol

Obtain an identifier for the protocol.

581

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int protocol() const;

ip::icmp::resolver

The ICMP resolver type.

typedef basic_resolver< icmp > resolver;

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

582

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::icmp::resolver_iterator

The type of a resolver iterator.

typedef basic_resolver_iterator< icmp > resolver_iterator;

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

create

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::icmp::resolver_query

The type of a resolver query.

typedef basic_resolver_query< icmp > resolver_query;

Types

DescriptionName

The protocol type associated with the endpoint query.protocol_type

583

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::icmp::socket

The ICMP socket type.

584

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_raw_socket< icmp > socket;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

585

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

586

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_raw_socket without opening it.basic_raw_socket

Construct and open a basic_raw_socket.

Construct a basic_raw_socket, opening it and binding it to the
given local endpoint.

Construct a basic_raw_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Receive some data on a connected socket.receive

587

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send raw data to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_raw_socket class template provides asynchronous and blocking raw-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::icmp::type

Obtain an identifier for the type of the protocol.

int type() const;

ip::icmp::v4

Construct to represent the IPv4 ICMP protocol.

588

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static icmp v4();

ip::icmp::v6

Construct to represent the IPv6 ICMP protocol.

static icmp v6();

ip::multicast::enable_loopback
Socket option determining whether outgoing multicast packets will be received on the same socket if it is a member of the multicast
group.

typedef implementation_defined enable_loopback;

Implements the IPPROTO_IP/IP_MULTICAST_LOOP socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::enable_loopback option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::enable_loopback option;
socket.get_option(option);
bool is_set = option.value();

ip::multicast::hops
Socket option for time-to-live associated with outgoing multicast packets.

typedef implementation_defined hops;

Implements the IPPROTO_IP/IP_MULTICAST_TTL socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::hops option(4);
socket.set_option(option);

Getting the current option value:

589

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::hops option;
socket.get_option(option);
int ttl = option.value();

ip::multicast::join_group
Socket option to join a multicast group on a specified interface.

typedef implementation_defined join_group;

Implements the IPPROTO_IP/IP_ADD_MEMBERSHIP socket option.

Examples

Setting the option to join a multicast group:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::address multicast_address =
 boost::asio::ip::address::from_string("225.0.0.1");
boost::asio::ip::multicast::join_group option(multicast_address);
socket.set_option(option);

ip::multicast::leave_group
Socket option to leave a multicast group on a specified interface.

typedef implementation_defined leave_group;

Implements the IPPROTO_IP/IP_DROP_MEMBERSHIP socket option.

Examples

Setting the option to leave a multicast group:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::address multicast_address =
 boost::asio::ip::address::from_string("225.0.0.1");
boost::asio::ip::multicast::leave_group option(multicast_address);
socket.set_option(option);

ip::multicast::outbound_interface
Socket option for local interface to use for outgoing multicast packets.

typedef implementation_defined outbound_interface;

Implements the IPPROTO_IP/IP_MULTICAST_IF socket option.

590

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::address_v4 local_interface =
 boost::asio::ip::address_v4::from_string("1.2.3.4");
boost::asio::ip::multicast::outbound_interface option(local_interface);
socket.set_option(option);

ip::resolver_query_base
The resolver_query_base class is used as a base for the basic_resolver_query class templates to provide a common place to define
the flag constants.

class resolver_query_base

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~resolver_query_base

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

ip::resolver_query_base::address_configured

Only return IPv4 addresses if a non-loopback IPv4 address is configured for the system. Only return IPv6 addresses if a non-loopback
IPv6 address is configured for the system.

591

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const int address_configured = implementation_defined;

ip::resolver_query_base::all_matching

If used with v4_mapped, return all matching IPv6 and IPv4 addresses.

static const int all_matching = implementation_defined;

ip::resolver_query_base::canonical_name

Determine the canonical name of the host specified in the query.

static const int canonical_name = implementation_defined;

ip::resolver_query_base::numeric_host

Host name should be treated as a numeric string defining an IPv4 or IPv6 address and no name resolution should be attempted.

static const int numeric_host = implementation_defined;

ip::resolver_query_base::numeric_service

Service name should be treated as a numeric string defining a port number and no name resolution should be attempted.

static const int numeric_service = implementation_defined;

ip::resolver_query_base::passive

Indicate that returned endpoint is intended for use as a locally bound socket endpoint.

static const int passive = implementation_defined;

ip::resolver_query_base::v4_mapped

If the query protocol family is specified as IPv6, return IPv4-mapped IPv6 addresses on finding no IPv6 addresses.

static const int v4_mapped = implementation_defined;

ip::resolver_query_base::~resolver_query_base

Protected destructor to prevent deletion through this type.

~resolver_query_base();

ip::resolver_service
Default service implementation for a resolver.

592

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename InternetProtocol>

class resolver_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a resolver implementation.implementation_type

The iterator type.iterator_type

The protocol type.protocol_type

The query type.query_type

Member Functions

DescriptionName

Asynchronously resolve a query to a list of entries.

Asynchronously resolve an endpoint to a list of entries.

async_resolve

Cancel pending asynchronous operations.cancel

Construct a new resolver implementation.construct

Destroy a resolver implementation.destroy

Get the io_service object that owns the service.get_io_service

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Resolve a query to a list of entries.

Resolve an endpoint to a list of entries.

resolve

Construct a new resolver service for the specified io_service.resolver_service

Destroy all user-defined handler objects owned by the service.shutdown_service

Data Members

DescriptionName

The unique service identifier.id

ip::resolver_service::async_resolve

Asynchronously resolve a query to a list of entries.

593

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Handler>

void async_resolve(
 implementation_type & impl,

const query_type & query,
 Handler handler);

Asynchronously resolve an endpoint to a list of entries.

template<
typename ResolveHandler>

void async_resolve(
 implementation_type & impl,

const endpoint_type & endpoint,
 ResolveHandler handler);

ip::resolver_service::async_resolve (1 of 2 overloads)

Asynchronously resolve a query to a list of entries.

template<
typename Handler>

void async_resolve(
 implementation_type & impl,

const query_type & query,
 Handler handler);

ip::resolver_service::async_resolve (2 of 2 overloads)

Asynchronously resolve an endpoint to a list of entries.

template<
typename ResolveHandler>

void async_resolve(
 implementation_type & impl,

const endpoint_type & endpoint,
 ResolveHandler handler);

ip::resolver_service::cancel

Cancel pending asynchronous operations.

void cancel(
 implementation_type & impl);

ip::resolver_service::construct

Construct a new resolver implementation.

void construct(
 implementation_type & impl);

ip::resolver_service::destroy

Destroy a resolver implementation.

594

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void destroy(
 implementation_type & impl);

ip::resolver_service::endpoint_type

The endpoint type.

typedef InternetProtocol::endpoint endpoint_type;

ip::resolver_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

ip::resolver_service::id

The unique service identifier.

static boost::asio::io_service::id id;

ip::resolver_service::implementation_type

The type of a resolver implementation.

typedef implementation_defined implementation_type;

ip::resolver_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

ip::resolver_service::iterator_type

The iterator type.

typedef InternetProtocol::resolver_iterator iterator_type;

ip::resolver_service::protocol_type

The protocol type.

595

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef InternetProtocol protocol_type;

ip::resolver_service::query_type

The query type.

typedef InternetProtocol::resolver_query query_type;

ip::resolver_service::resolve

Resolve a query to a list of entries.

iterator_type resolve(
 implementation_type & impl,

const query_type & query,
 boost::system::error_code & ec);

Resolve an endpoint to a list of entries.

iterator_type resolve(
 implementation_type & impl,

const endpoint_type & endpoint,
 boost::system::error_code & ec);

ip::resolver_service::resolve (1 of 2 overloads)

Resolve a query to a list of entries.

iterator_type resolve(
 implementation_type & impl,

const query_type & query,
 boost::system::error_code & ec);

ip::resolver_service::resolve (2 of 2 overloads)

Resolve an endpoint to a list of entries.

iterator_type resolve(
 implementation_type & impl,

const endpoint_type & endpoint,
 boost::system::error_code & ec);

ip::resolver_service::resolver_service

Construct a new resolver service for the specified io_service.

resolver_service(
 boost::asio::io_service & io_service);

ip::resolver_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

596

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void shutdown_service();

ip::tcp
Encapsulates the flags needed for TCP.

class tcp

Types

DescriptionName

The TCP acceptor type.acceptor

The type of a TCP endpoint.endpoint

The TCP iostream type.iostream

Socket option for disabling the Nagle algorithm.no_delay

The TCP resolver type.resolver

The type of a resolver iterator.resolver_iterator

The type of a resolver query.resolver_query

The TCP socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

Construct to represent the IPv4 TCP protocol.v4

Construct to represent the IPv6 TCP protocol.v6

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The ip::tcp class contains flags necessary for TCP sockets.

597

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

ip::tcp::acceptor

The TCP acceptor type.

598

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket_acceptor< tcp > acceptor;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of an acceptor.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

599

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Accept a new connection.

Accept a new connection and obtain the endpoint of the peer.

accept

Assigns an existing native acceptor to the acceptor.assign

Start an asynchronous accept.async_accept

Construct an acceptor without opening it.

Construct an open acceptor.

Construct an acceptor opened on the given endpoint.

Construct a basic_socket_acceptor on an existing native acceptor.

basic_socket_acceptor

Bind the acceptor to the given local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close the acceptor.close

Get the io_service associated with the object.get_io_service

Get an option from the acceptor.get_option

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the acceptor is open.is_open

Place the acceptor into the state where it will listen for new
connections.

listen

Get the local endpoint of the acceptor.local_endpoint

Get the native acceptor representation.native

Open the acceptor using the specified protocol.open

Set an option on the acceptor.set_option

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

600

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket_acceptor class template is used for accepting new socket connections.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Opening a socket acceptor with the SO_REUSEADDR option enabled:

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
acceptor.open(endpoint.protocol());
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen();

ip::tcp::endpoint

The type of a TCP endpoint.

typedef basic_endpoint< tcp > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

601

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

602

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::tcp::family

Obtain an identifier for the protocol family.

int family() const;

ip::tcp::iostream

The TCP iostream type.

typedef basic_socket_iostream< tcp > iostream;

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Return a pointer to the underlying streambuf.rdbuf

ip::tcp::no_delay

Socket option for disabling the Nagle algorithm.

typedef implementation_defined no_delay;

Implements the IPPROTO_TCP/TCP_NODELAY socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

Getting the current option value:

603

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option;
socket.get_option(option);
bool is_set = option.value();

ip::tcp::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const tcp & p1,
const tcp & p2);

ip::tcp::operator==

Compare two protocols for equality.

friend bool operator==(
const tcp & p1,
const tcp & p2);

ip::tcp::protocol

Obtain an identifier for the protocol.

int protocol() const;

ip::tcp::resolver

The TCP resolver type.

typedef basic_resolver< tcp > resolver;

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

604

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::tcp::resolver_iterator

The type of a resolver iterator.

typedef basic_resolver_iterator< tcp > resolver_iterator;

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

create

605

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::tcp::resolver_query

The type of a resolver query.

typedef basic_resolver_query< tcp > resolver_query;

Types

DescriptionName

The protocol type associated with the endpoint query.protocol_type

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

606

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::tcp::socket

The TCP socket type.

607

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_stream_socket< tcp > socket;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

608

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

609

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Read some data from the socket.read_some

610

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::tcp::type

Obtain an identifier for the type of the protocol.

int type() const;

ip::tcp::v4

Construct to represent the IPv4 TCP protocol.

611

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static tcp v4();

ip::tcp::v6

Construct to represent the IPv6 TCP protocol.

static tcp v6();

ip::udp
Encapsulates the flags needed for UDP.

class udp

Types

DescriptionName

The type of a UDP endpoint.endpoint

The UDP resolver type.resolver

The type of a resolver iterator.resolver_iterator

The type of a resolver query.resolver_query

The UDP socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

Construct to represent the IPv4 UDP protocol.v4

Construct to represent the IPv6 UDP protocol.v6

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The ip::udp class contains flags necessary for UDP sockets.

612

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

ip::udp::endpoint

The type of a UDP endpoint.

typedef basic_endpoint< udp > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

613

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

614

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::udp::family

Obtain an identifier for the protocol family.

int family() const;

ip::udp::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const udp & p1,
const udp & p2);

ip::udp::operator==

Compare two protocols for equality.

friend bool operator==(
const udp & p1,
const udp & p2);

ip::udp::protocol

Obtain an identifier for the protocol.

int protocol() const;

ip::udp::resolver

The UDP resolver type.

615

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_resolver< udp > resolver;

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

616

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

ip::udp::resolver_iterator

The type of a resolver iterator.

typedef basic_resolver_iterator< udp > resolver_iterator;

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

create

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::udp::resolver_query

The type of a resolver query.

typedef basic_resolver_query< udp > resolver_query;

Types

DescriptionName

The protocol type associated with the endpoint query.protocol_type

617

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::udp::socket

The UDP socket type.

618

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_datagram_socket< udp > socket;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

619

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

620

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Receive some data on a connected socket.receive

621

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

ip::udp::type

Obtain an identifier for the type of the protocol.

int type() const;

ip::udp::v4

Construct to represent the IPv4 UDP protocol.

622

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static udp v4();

ip::udp::v6

Construct to represent the IPv6 UDP protocol.

static udp v6();

ip::unicast::hops
Socket option for time-to-live associated with outgoing unicast packets.

typedef implementation_defined hops;

Implements the IPPROTO_IP/IP_UNICAST_TTL socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::unicast::hops option(4);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::unicast::hops option;
socket.get_option(option);
int ttl = option.value();

ip::v6_only
Socket option for determining whether an IPv6 socket supports IPv6 communication only.

typedef implementation_defined v6_only;

Implements the IPPROTO_IPV6/IP_V6ONLY socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::v6_only option(true);
socket.set_option(option);

Getting the current option value:

623

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::v6_only option;
socket.get_option(option);
bool v6_only = option.value();

is_match_condition
Type trait used to determine whether a type can be used as a match condition function with read_until and async_read_until.

template<
typename T>

struct is_match_condition

Data Members

DescriptionName

The value member is true if the type may be used as a match
condition.

value

is_match_condition::value

The value member is true if the type may be used as a match condition.

static const bool value;

is_read_buffered
The is_read_buffered class is a traits class that may be used to determine whether a stream type supports buffering of read data.

template<
typename Stream>

class is_read_buffered

Data Members

DescriptionName

The value member is true only if the Stream type supports buf-
fering of read data.

value

is_read_buffered::value

The value member is true only if the Stream type supports buffering of read data.

static const bool value;

is_write_buffered
The is_write_buffered class is a traits class that may be used to determine whether a stream type supports buffering of written data.

624

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Stream>

class is_write_buffered

Data Members

DescriptionName

The value member is true only if the Stream type supports buf-
fering of written data.

value

is_write_buffered::value

The value member is true only if the Stream type supports buffering of written data.

static const bool value;

local::basic_endpoint
Describes an endpoint for a UNIX socket.

template<
typename Protocol>

class basic_endpoint

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

625

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an endpoint using the specified path name.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the path associated with the endpoint.

Set the path associated with the endpoint.

path

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The local::basic_endpoint class template describes an endpoint that may be associated with a particular UNIX socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

local::basic_endpoint::basic_endpoint

Default constructor.

626

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_endpoint();

Construct an endpoint using the specified path name.

basic_endpoint(
const char * path);

basic_endpoint(
const std::string & path);

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

local::basic_endpoint::basic_endpoint (1 of 4 overloads)

Default constructor.

basic_endpoint();

local::basic_endpoint::basic_endpoint (2 of 4 overloads)

Construct an endpoint using the specified path name.

basic_endpoint(
const char * path);

local::basic_endpoint::basic_endpoint (3 of 4 overloads)

Construct an endpoint using the specified path name.

basic_endpoint(
const std::string & path);

local::basic_endpoint::basic_endpoint (4 of 4 overloads)

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

local::basic_endpoint::capacity

Get the capacity of the endpoint in the native type.

std::size_t capacity() const;

local::basic_endpoint::data

Get the underlying endpoint in the native type.

627

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

data_type * data();

const data_type * data() const;

local::basic_endpoint::data (1 of 2 overloads)

Get the underlying endpoint in the native type.

data_type * data();

local::basic_endpoint::data (2 of 2 overloads)

Get the underlying endpoint in the native type.

const data_type * data() const;

local::basic_endpoint::data_type

The type of the endpoint structure. This type is dependent on the underlying implementation of the socket layer.

typedef implementation_defined data_type;

local::basic_endpoint::operator!=

Compare two endpoints for inequality.

friend bool operator!=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

local::basic_endpoint::operator<

Compare endpoints for ordering.

friend bool operator<(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

local::basic_endpoint::operator<<

Output an endpoint as a string.

std::basic_ostream< Elem, Traits > & operator<<(
 std::basic_ostream< Elem, Traits > & os,

const basic_endpoint< Protocol > & endpoint);

Used to output a human-readable string for a specified endpoint.

Parameters

os The output stream to which the string will be written.

endpoint The endpoint to be written.

628

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The output stream.

local::basic_endpoint::operator=

Assign from another endpoint.

basic_endpoint & operator=(
const basic_endpoint & other);

local::basic_endpoint::operator==

Compare two endpoints for equality.

friend bool operator==(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

local::basic_endpoint::path

Get the path associated with the endpoint.

std::string path() const;

Set the path associated with the endpoint.

void path(
const char * p);

void path(
const std::string & p);

local::basic_endpoint::path (1 of 3 overloads)

Get the path associated with the endpoint.

std::string path() const;

local::basic_endpoint::path (2 of 3 overloads)

Set the path associated with the endpoint.

void path(
const char * p);

local::basic_endpoint::path (3 of 3 overloads)

Set the path associated with the endpoint.

629

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void path(
const std::string & p);

local::basic_endpoint::protocol

The protocol associated with the endpoint.

protocol_type protocol() const;

local::basic_endpoint::protocol_type

The protocol type associated with the endpoint.

typedef Protocol protocol_type;

local::basic_endpoint::resize

Set the underlying size of the endpoint in the native type.

void resize(
 std::size_t size);

local::basic_endpoint::size

Get the underlying size of the endpoint in the native type.

std::size_t size() const;

local::connect_pair
Create a pair of connected sockets.

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

void connect_pair(
 basic_socket< Protocol, SocketService1 > & socket1,
 basic_socket< Protocol, SocketService2 > & socket2);

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

boost::system::error_code connect_pair(
 basic_socket< Protocol, SocketService1 > & socket1,
 basic_socket< Protocol, SocketService2 > & socket2,
 boost::system::error_code & ec);

local::connect_pair (1 of 2 overloads)

Create a pair of connected sockets.

630

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

void connect_pair(
 basic_socket< Protocol, SocketService1 > & socket1,
 basic_socket< Protocol, SocketService2 > & socket2);

local::connect_pair (2 of 2 overloads)

Create a pair of connected sockets.

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

boost::system::error_code connect_pair(
 basic_socket< Protocol, SocketService1 > & socket1,
 basic_socket< Protocol, SocketService2 > & socket2,
 boost::system::error_code & ec);

local::datagram_protocol
Encapsulates the flags needed for datagram-oriented UNIX sockets.

class datagram_protocol

Types

DescriptionName

The type of a UNIX domain endpoint.endpoint

The UNIX domain socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

The local::datagram_protocol class contains flags necessary for datagram-oriented UNIX domain sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

631

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

local::datagram_protocol::endpoint

The type of a UNIX domain endpoint.

typedef basic_endpoint< datagram_protocol > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint using the specified path name.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the path associated with the endpoint.

Set the path associated with the endpoint.

path

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

632

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The local::basic_endpoint class template describes an endpoint that may be associated with a particular UNIX socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

local::datagram_protocol::family

Obtain an identifier for the protocol family.

int family() const;

local::datagram_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

local::datagram_protocol::socket

The UNIX domain socket type.

633

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_datagram_socket< datagram_protocol > socket;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

634

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

635

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Receive some data on a connected socket.receive

636

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

local::datagram_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

local::stream_protocol
Encapsulates the flags needed for stream-oriented UNIX sockets.

637

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class stream_protocol

Types

DescriptionName

The UNIX domain acceptor type.acceptor

The type of a UNIX domain endpoint.endpoint

The UNIX domain iostream type.iostream

The UNIX domain socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

The local::stream_protocol class contains flags necessary for stream-oriented UNIX domain sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

local::stream_protocol::acceptor

The UNIX domain acceptor type.

638

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_socket_acceptor< stream_protocol > acceptor;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of an acceptor.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

639

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Accept a new connection.

Accept a new connection and obtain the endpoint of the peer.

accept

Assigns an existing native acceptor to the acceptor.assign

Start an asynchronous accept.async_accept

Construct an acceptor without opening it.

Construct an open acceptor.

Construct an acceptor opened on the given endpoint.

Construct a basic_socket_acceptor on an existing native acceptor.

basic_socket_acceptor

Bind the acceptor to the given local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close the acceptor.close

Get the io_service associated with the object.get_io_service

Get an option from the acceptor.get_option

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the acceptor is open.is_open

Place the acceptor into the state where it will listen for new
connections.

listen

Get the local endpoint of the acceptor.local_endpoint

Get the native acceptor representation.native

Open the acceptor using the specified protocol.open

Set an option on the acceptor.set_option

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

640

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_socket_acceptor class template is used for accepting new socket connections.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Opening a socket acceptor with the SO_REUSEADDR option enabled:

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
acceptor.open(endpoint.protocol());
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen();

local::stream_protocol::endpoint

The type of a UNIX domain endpoint.

typedef basic_endpoint< stream_protocol > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

641

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an endpoint using the specified path name.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the path associated with the endpoint.

Set the path associated with the endpoint.

path

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare two endpoints for equality.operator==

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The local::basic_endpoint class template describes an endpoint that may be associated with a particular UNIX socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

local::stream_protocol::family

Obtain an identifier for the protocol family.

642

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int family() const;

local::stream_protocol::iostream

The UNIX domain iostream type.

typedef basic_socket_iostream< stream_protocol > iostream;

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Return a pointer to the underlying streambuf.rdbuf

local::stream_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

local::stream_protocol::socket

The UNIX domain socket type.

643

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_stream_socket< stream_protocol > socket;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_type

IO control command to set the blocking mode of the socket.non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

644

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

645

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get the native socket representation.native

Open the socket using the specified protocol.open

Read some data from the socket.read_some

646

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

local::stream_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

mutable_buffer
Holds a buffer that can be modified.

647

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class mutable_buffer

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

mutable_buffer

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new modifiable buffer that is offset from the start of
another.

operator+

The mutable_buffer class provides a safe representation of a buffer that can be modified. It does not own the underlying data, and
so is cheap to copy or assign.

mutable_buffer::buffer_cast

Cast a non-modifiable buffer to a specified pointer to POD type.

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const mutable_buffer & b);

mutable_buffer::buffer_size

Get the number of bytes in a non-modifiable buffer.

std::size_t buffer_size(
const mutable_buffer & b);

mutable_buffer::mutable_buffer

Construct an empty buffer.

mutable_buffer();

Construct a buffer to represent a given memory range.

648

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mutable_buffer(
void * data,

 std::size_t size);

mutable_buffer::mutable_buffer (1 of 2 overloads)

Construct an empty buffer.

mutable_buffer();

mutable_buffer::mutable_buffer (2 of 2 overloads)

Construct a buffer to represent a given memory range.

mutable_buffer(
void * data,

 std::size_t size);

mutable_buffer::operator+

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,

 std::size_t start);

mutable_buffer operator+(
 std::size_t start,

const mutable_buffer & b);

mutable_buffer::operator+ (1 of 2 overloads)

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,

 std::size_t start);

mutable_buffer::operator+ (2 of 2 overloads)

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
 std::size_t start,

const mutable_buffer & b);

mutable_buffers_1
Adapts a single modifiable buffer so that it meets the requirements of the MutableBufferSequence concept.

649

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class mutable_buffers_1 :
public mutable_buffer

Types

DescriptionName

A random-access iterator type that may be used to read elements.const_iterator

The type for each element in the list of buffers.value_type

Member Functions

DescriptionName

Get a random-access iterator to the first element.begin

Get a random-access iterator for one past the last element.end

Construct to represent a given memory range.

Construct to represent a single modifiable buffer.

mutable_buffers_1

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new modifiable buffer that is offset from the start of
another.

operator+

mutable_buffers_1::begin

Get a random-access iterator to the first element.

const_iterator begin() const;

mutable_buffers_1::buffer_cast

Inherited from mutable_buffer.

Cast a non-modifiable buffer to a specified pointer to POD type.

650

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const mutable_buffer & b);

mutable_buffers_1::buffer_size

Inherited from mutable_buffer.

Get the number of bytes in a non-modifiable buffer.

std::size_t buffer_size(
const mutable_buffer & b);

mutable_buffers_1::const_iterator

A random-access iterator type that may be used to read elements.

typedef const mutable_buffer * const_iterator;

mutable_buffers_1::end

Get a random-access iterator for one past the last element.

const_iterator end() const;

mutable_buffers_1::mutable_buffers_1

Construct to represent a given memory range.

mutable_buffers_1(
void * data,

 std::size_t size);

Construct to represent a single modifiable buffer.

mutable_buffers_1(
const mutable_buffer & b);

mutable_buffers_1::mutable_buffers_1 (1 of 2 overloads)

Construct to represent a given memory range.

mutable_buffers_1(
void * data,

 std::size_t size);

mutable_buffers_1::mutable_buffers_1 (2 of 2 overloads)

Construct to represent a single modifiable buffer.

651

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mutable_buffers_1(
const mutable_buffer & b);

mutable_buffers_1::operator+

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,

 std::size_t start);

mutable_buffer operator+(
 std::size_t start,

const mutable_buffer & b);

mutable_buffers_1::operator+ (1 of 2 overloads)

Inherited from mutable_buffer.

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,

 std::size_t start);

mutable_buffers_1::operator+ (2 of 2 overloads)

Inherited from mutable_buffer.

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
 std::size_t start,

const mutable_buffer & b);

mutable_buffers_1::value_type

The type for each element in the list of buffers.

typedef mutable_buffer value_type;

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

mutable_buffer

652

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new modifiable buffer that is offset from the start of
another.

operator+

The mutable_buffer class provides a safe representation of a buffer that can be modified. It does not own the underlying data, and
so is cheap to copy or assign.

null_buffers
An implementation of both the ConstBufferSequence and MutableBufferSequence concepts to represent a null buffer sequence.

class null_buffers

Types

DescriptionName

A random-access iterator type that may be used to read elements.const_iterator

The type for each element in the list of buffers.value_type

Member Functions

DescriptionName

Get a random-access iterator to the first element.begin

Get a random-access iterator for one past the last element.end

null_buffers::begin

Get a random-access iterator to the first element.

const_iterator begin() const;

null_buffers::const_iterator

A random-access iterator type that may be used to read elements.

typedef const mutable_buffer * const_iterator;

null_buffers::end

Get a random-access iterator for one past the last element.

653

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_iterator end() const;

null_buffers::value_type

The type for each element in the list of buffers.

typedef mutable_buffer value_type;

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

mutable_buffer

Related Functions

DescriptionName

Cast a non-modifiable buffer to a specified pointer to POD type.buffer_cast

Get the number of bytes in a non-modifiable buffer.buffer_size

Create a new modifiable buffer that is offset from the start of
another.

operator+

The mutable_buffer class provides a safe representation of a buffer that can be modified. It does not own the underlying data, and
so is cheap to copy or assign.

placeholders::bytes_transferred
An argument placeholder, for use with boost::bind(), that corresponds to the bytes_transferred argument of a handler for asynchronous
functions such as boost::asio::basic_stream_socket::async_write_some or boost::asio::async_write.

unspecified bytes_transferred;

placeholders::error
An argument placeholder, for use with boost::bind(), that corresponds to the error argument of a handler for any of the asynchronous
functions.

unspecified error;

placeholders::iterator
An argument placeholder, for use with boost::bind(), that corresponds to the iterator argument of a handler for asynchronous functions
such as boost::asio::basic_resolver::resolve.

654

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unspecified iterator;

posix::basic_descriptor
Provides POSIX descriptor functionality.

template<
typename DescriptorService>

class basic_descriptor :
public basic_io_object< DescriptorService >,
public posix::descriptor_base

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_type

IO control command to set the blocking mode of the descriptor.non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

655

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Construct a basic_descriptor without opening it.

Construct a basic_descriptor on an existing native descriptor.

basic_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native descriptor representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_descriptor

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The posix::basic_descriptor class template provides the ability to wrap a POSIX descriptor.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

posix::basic_descriptor::assign

Assign an existing native descriptor to the descriptor.

656

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const native_type & native_descriptor);

boost::system::error_code assign(
const native_type & native_descriptor,

 boost::system::error_code & ec);

posix::basic_descriptor::assign (1 of 2 overloads)

Assign an existing native descriptor to the descriptor.

void assign(
const native_type & native_descriptor);

posix::basic_descriptor::assign (2 of 2 overloads)

Assign an existing native descriptor to the descriptor.

boost::system::error_code assign(
const native_type & native_descriptor,

 boost::system::error_code & ec);

posix::basic_descriptor::basic_descriptor

Construct a basic_descriptor without opening it.

basic_descriptor(
 boost::asio::io_service & io_service);

Construct a basic_descriptor on an existing native descriptor.

basic_descriptor(
 boost::asio::io_service & io_service,

const native_type & native_descriptor);

posix::basic_descriptor::basic_descriptor (1 of 2 overloads)

Construct a basic_descriptor without opening it.

basic_descriptor(
 boost::asio::io_service & io_service);

This constructor creates a descriptor without opening it.

Parameters

io_service The io_service object that the descriptor will use to dispatch handlers for any asynchronous operations performed
on the descriptor.

posix::basic_descriptor::basic_descriptor (2 of 2 overloads)

Construct a basic_descriptor on an existing native descriptor.

657

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_descriptor(
 boost::asio::io_service & io_service,

const native_type & native_descriptor);

This constructor creates a descriptor object to hold an existing native descriptor.

Parameters

io_service The io_service object that the descriptor will use to dispatch handlers for any asynchronous operations
performed on the descriptor.

native_descriptor A native descriptor.

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_descriptor::bytes_readable

Inherited from posix::descriptor_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::bytes_readable command(true);
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::basic_descriptor::cancel

Cancel all asynchronous operations associated with the descriptor.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

posix::basic_descriptor::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the descriptor.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

658

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_descriptor::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the descriptor.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

posix::basic_descriptor::close

Close the descriptor.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

posix::basic_descriptor::close (1 of 2 overloads)

Close the descriptor.

void close();

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_descriptor::close (2 of 2 overloads)

Close the descriptor.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

posix::basic_descriptor::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

659

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

posix::basic_descriptor::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

posix::basic_descriptor::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

posix::basic_descriptor::io_control

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

void io_control(
 IoControlCommand & command);

template<
typename IoControlCommand>

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

posix::basic_descriptor::io_control (1 of 2 overloads)

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

660

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::basic_descriptor::io_control (2 of 2 overloads)

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
boost::system::error_code ec;
descriptor.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

posix::basic_descriptor::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

661

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

posix::basic_descriptor::is_open

Determine whether the descriptor is open.

bool is_open() const;

posix::basic_descriptor::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

posix::basic_descriptor::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_descriptor cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_descriptor::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_descriptor cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_descriptor::lowest_layer_type

A basic_descriptor is always the lowest layer.

662

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_descriptor< DescriptorService > lowest_layer_type;

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_type

IO control command to set the blocking mode of the descriptor.non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Construct a basic_descriptor without opening it.

Construct a basic_descriptor on an existing native descriptor.

basic_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native descriptor representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_descriptor

663

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The posix::basic_descriptor class template provides the ability to wrap a POSIX descriptor.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

posix::basic_descriptor::native

Get the native descriptor representation.

native_type native();

This function may be used to obtain the underlying representation of the descriptor. This is intended to allow access to native descriptor
functionality that is not otherwise provided.

posix::basic_descriptor::native_type

The native representation of a descriptor.

typedef DescriptorService::native_type native_type;

posix::basic_descriptor::non_blocking_io

Inherited from posix::descriptor_base.

IO control command to set the blocking mode of the descriptor.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::non_blocking_io command(true);
descriptor.io_control(command);

posix::basic_descriptor::service

Inherited from basic_io_object.

The service associated with the I/O object.

664

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & service;

posix::basic_descriptor::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef DescriptorService service_type;

posix::basic_descriptor::~basic_descriptor

Protected destructor to prevent deletion through this type.

~basic_descriptor();

posix::basic_stream_descriptor
Provides stream-oriented descriptor functionality.

template<
typename StreamDescriptorService = stream_descriptor_service>

class basic_stream_descriptor :
public posix::basic_descriptor< StreamDescriptorService >

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_type

IO control command to set the blocking mode of the descriptor.non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

665

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_descriptor without opening it.

Construct a basic_stream_descriptor on an existing native
descriptor.

basic_stream_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native descriptor representation.native

Read some data from the descriptor.read_some

Write some data to the descriptor.write_some

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The posix::basic_stream_descriptor class template provides asynchronous and blocking stream-oriented descriptor functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

666

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::assign

Assign an existing native descriptor to the descriptor.

void assign(
const native_type & native_descriptor);

boost::system::error_code assign(
const native_type & native_descriptor,

 boost::system::error_code & ec);

posix::basic_stream_descriptor::assign (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Assign an existing native descriptor to the descriptor.

void assign(
const native_type & native_descriptor);

posix::basic_stream_descriptor::assign (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Assign an existing native descriptor to the descriptor.

boost::system::error_code assign(
const native_type & native_descriptor,

 boost::system::error_code & ec);

posix::basic_stream_descriptor::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously read data from the stream descriptor. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

667

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes read.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

descriptor.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

posix::basic_stream_descriptor::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to asynchronously write data to the stream descriptor. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the descriptor. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

668

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To write a single data buffer use the buffer function as follows:

descriptor.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

posix::basic_stream_descriptor::basic_stream_descriptor

Construct a basic_stream_descriptor without opening it.

basic_stream_descriptor(
 boost::asio::io_service & io_service);

Construct a basic_stream_descriptor on an existing native descriptor.

basic_stream_descriptor(
 boost::asio::io_service & io_service,

const native_type & native_descriptor);

posix::basic_stream_descriptor::basic_stream_descriptor (1 of 2 overloads)

Construct a basic_stream_descriptor without opening it.

basic_stream_descriptor(
 boost::asio::io_service & io_service);

This constructor creates a stream descriptor without opening it. The descriptor needs to be opened and then connected or accepted
before data can be sent or received on it.

Parameters

io_service The io_service object that the stream descriptor will use to dispatch handlers for any asynchronous operations
performed on the descriptor.

posix::basic_stream_descriptor::basic_stream_descriptor (2 of 2 overloads)

Construct a basic_stream_descriptor on an existing native descriptor.

basic_stream_descriptor(
 boost::asio::io_service & io_service,

const native_type & native_descriptor);

This constructor creates a stream descriptor object to hold an existing native descriptor.

Parameters

io_service The io_service object that the stream descriptor will use to dispatch handlers for any asynchronous op-
erations performed on the descriptor.

native_descriptor The new underlying descriptor implementation.

669

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_stream_descriptor::bytes_readable

Inherited from posix::descriptor_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::bytes_readable command(true);
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::basic_stream_descriptor::cancel

Cancel all asynchronous operations associated with the descriptor.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

posix::basic_stream_descriptor::cancel (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Cancel all asynchronous operations associated with the descriptor.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_stream_descriptor::cancel (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Cancel all asynchronous operations associated with the descriptor.

670

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

posix::basic_stream_descriptor::close

Close the descriptor.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

posix::basic_stream_descriptor::close (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Close the descriptor.

void close();

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_stream_descriptor::close (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Close the descriptor.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

posix::basic_stream_descriptor::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

671

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

posix::basic_stream_descriptor::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

posix::basic_stream_descriptor::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

posix::basic_stream_descriptor::io_control

Perform an IO control command on the descriptor.

void io_control(
 IoControlCommand & command);

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

posix::basic_stream_descriptor::io_control (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Perform an IO control command on the descriptor.

void io_control(
 IoControlCommand & command);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

Exceptions

boost::system::system_error Thrown on failure.

672

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::basic_stream_descriptor::io_control (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Perform an IO control command on the descriptor.

boost::system::error_code io_control(
 IoControlCommand & command,
 boost::system::error_code & ec);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
boost::system::error_code ec;
descriptor.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

posix::basic_stream_descriptor::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

673

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::is_open

Inherited from posix::basic_descriptor.

Determine whether the descriptor is open.

bool is_open() const;

posix::basic_stream_descriptor::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

posix::basic_stream_descriptor::lowest_layer (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_descriptor cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_stream_descriptor::lowest_layer (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_descriptor cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_stream_descriptor::lowest_layer_type

Inherited from posix::basic_descriptor.

A basic_descriptor is always the lowest layer.

674

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_descriptor< StreamDescriptorService > lowest_layer_type;

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_type

IO control command to set the blocking mode of the descriptor.non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Construct a basic_descriptor without opening it.

Construct a basic_descriptor on an existing native descriptor.

basic_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native descriptor representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_descriptor

675

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The posix::basic_descriptor class template provides the ability to wrap a POSIX descriptor.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

posix::basic_stream_descriptor::native

Inherited from posix::basic_descriptor.

Get the native descriptor representation.

native_type native();

This function may be used to obtain the underlying representation of the descriptor. This is intended to allow access to native descriptor
functionality that is not otherwise provided.

posix::basic_stream_descriptor::native_type

The native representation of a descriptor.

typedef StreamDescriptorService::native_type native_type;

posix::basic_stream_descriptor::non_blocking_io

Inherited from posix::descriptor_base.

IO control command to set the blocking mode of the descriptor.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::non_blocking_io command(true);
descriptor.io_control(command);

posix::basic_stream_descriptor::read_some

Read some data from the descriptor.

676

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

posix::basic_stream_descriptor::read_some (1 of 2 overloads)

Read some data from the descriptor.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream descriptor. The function call will block until one or more bytes of data has been
read successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

descriptor.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

posix::basic_stream_descriptor::read_some (2 of 2 overloads)

Read some data from the descriptor.

677

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to read data from the stream descriptor. The function call will block until one or more bytes of data has been
read successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

posix::basic_stream_descriptor::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

posix::basic_stream_descriptor::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamDescriptorService service_type;

posix::basic_stream_descriptor::write_some

Write some data to the descriptor.

678

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

posix::basic_stream_descriptor::write_some (1 of 2 overloads)

Write some data to the descriptor.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the stream descriptor. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the descriptor.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

descriptor.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

posix::basic_stream_descriptor::write_some (2 of 2 overloads)

Write some data to the descriptor.

679

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to write data to the stream descriptor. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the descriptor.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

posix::descriptor_base
The descriptor_base class is used as a base for the basic_stream_descriptor class template so that we have a common place to define
the associated IO control commands.

class descriptor_base

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

IO control command to set the blocking mode of the descriptor.non_blocking_io

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~descriptor_base

posix::descriptor_base::bytes_readable

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

680

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::bytes_readable command(true);
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::descriptor_base::non_blocking_io

IO control command to set the blocking mode of the descriptor.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::non_blocking_io command(true);
descriptor.io_control(command);

posix::descriptor_base::~descriptor_base

Protected destructor to prevent deletion through this type.

~descriptor_base();

posix::stream_descriptor
Typedef for the typical usage of a stream-oriented descriptor.

typedef basic_stream_descriptor stream_descriptor;

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_type

IO control command to set the blocking mode of the descriptor.non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

681

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_descriptor without opening it.

Construct a basic_stream_descriptor on an existing native
descriptor.

basic_stream_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native descriptor representation.native

Read some data from the descriptor.read_some

Write some data to the descriptor.write_some

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The posix::basic_stream_descriptor class template provides asynchronous and blocking stream-oriented descriptor functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

682

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::stream_descriptor_service
Default service implementation for a stream descriptor.

class stream_descriptor_service :
public io_service::service

Types

DescriptionName

The type of a stream descriptor implementation.implementation_type

The native descriptor type.native_type

Member Functions

DescriptionName

Assign an existing native descriptor to a stream descriptor.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close a stream descriptor implementation.close

Construct a new stream descriptor implementation.construct

Destroy a stream descriptor implementation.destroy

Get the io_service object that owns the service.get_io_service

Perform an IO control command on the descriptor.io_control

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the descriptor is open.is_open

Get the native descriptor implementation.native

Read some data from the stream.read_some

Destroy all user-defined descriptorr objects owned by the ser-
vice.

shutdown_service

Construct a new stream descriptor service for the specified
io_service.

stream_descriptor_service

Write the given data to the stream.write_some

683

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The unique service identifier.id

posix::stream_descriptor_service::assign

Assign an existing native descriptor to a stream descriptor.

boost::system::error_code assign(
 implementation_type & impl,

const native_type & native_descriptor,
 boost::system::error_code & ec);

posix::stream_descriptor_service::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 ReadHandler descriptorr);

posix::stream_descriptor_service::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 WriteHandler descriptorr);

posix::stream_descriptor_service::cancel

Cancel all asynchronous operations associated with the descriptor.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

posix::stream_descriptor_service::close

Close a stream descriptor implementation.

684

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

posix::stream_descriptor_service::construct

Construct a new stream descriptor implementation.

void construct(
 implementation_type & impl);

posix::stream_descriptor_service::destroy

Destroy a stream descriptor implementation.

void destroy(
 implementation_type & impl);

posix::stream_descriptor_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

posix::stream_descriptor_service::id

The unique service identifier.

static boost::asio::io_service::id id;

posix::stream_descriptor_service::implementation_type

The type of a stream descriptor implementation.

typedef implementation_defined implementation_type;

posix::stream_descriptor_service::io_control

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

boost::system::error_code io_control(
 implementation_type & impl,
 IoControlCommand & command,
 boost::system::error_code & ec);

posix::stream_descriptor_service::io_service

Inherited from io_service.

685

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

posix::stream_descriptor_service::is_open

Determine whether the descriptor is open.

bool is_open(
const implementation_type & impl) const;

posix::stream_descriptor_service::native

Get the native descriptor implementation.

native_type native(
 implementation_type & impl);

posix::stream_descriptor_service::native_type

The native descriptor type.

typedef implementation_defined native_type;

posix::stream_descriptor_service::read_some

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

posix::stream_descriptor_service::shutdown_service

Destroy all user-defined descriptorr objects owned by the service.

void shutdown_service();

posix::stream_descriptor_service::stream_descriptor_service

Construct a new stream descriptor service for the specified io_service.

stream_descriptor_service(
 boost::asio::io_service & io_service);

posix::stream_descriptor_service::write_some

Write the given data to the stream.

686

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

raw_socket_service
Default service implementation for a raw socket.

template<
typename Protocol>

class raw_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a raw socket.implementation_type

The native socket type.native_type

The protocol type.protocol_type

687

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

688

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a raw socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous receive that will get the endpoint of the
sender.

async_receive_from

Start an asynchronous send.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

bind

Cancel all asynchronous operations associated with the socket.cancel

Close a raw socket implementation.close

Connect the raw socket to the specified endpoint.connect

Construct a new raw socket implementation.construct

Destroy a raw socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Get the native socket implementation.native

open

Construct a new raw socket service for the specified io_service.raw_socket_service

Receive some data from the peer.receive

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

689

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Send raw data to the specified endpoint.send_to

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Destroy all user-defined handler objects owned by the service.shutdown_service

Data Members

DescriptionName

The unique service identifier.id

raw_socket_service::assign

Assign an existing native socket to a raw socket.

boost::system::error_code assign(
 implementation_type & impl,

const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

raw_socket_service::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void async_connect(
 implementation_type & impl,

const endpoint_type & peer_endpoint,
 ConnectHandler handler);

raw_socket_service::async_receive

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 socket_base::message_flags flags,
 ReadHandler handler);

raw_socket_service::async_receive_from

Start an asynchronous receive that will get the endpoint of the sender.

690

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive_from(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 ReadHandler handler);

raw_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 socket_base::message_flags flags,
 WriteHandler handler);

raw_socket_service::async_send_to

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send_to(
 implementation_type & impl,

const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 WriteHandler handler);

raw_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
const implementation_type & impl,

 boost::system::error_code & ec) const;

raw_socket_service::available

Determine the number of bytes available for reading.

691

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t available(
const implementation_type & impl,

 boost::system::error_code & ec) const;

raw_socket_service::bind

boost::system::error_code bind(
 implementation_type & impl,

const endpoint_type & endpoint,
 boost::system::error_code & ec);

raw_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

raw_socket_service::close

Close a raw socket implementation.

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

raw_socket_service::connect

Connect the raw socket to the specified endpoint.

boost::system::error_code connect(
 implementation_type & impl,

const endpoint_type & peer_endpoint,
 boost::system::error_code & ec);

raw_socket_service::construct

Construct a new raw socket implementation.

void construct(
 implementation_type & impl);

raw_socket_service::destroy

Destroy a raw socket implementation.

void destroy(
 implementation_type & impl);

raw_socket_service::endpoint_type

The endpoint type.

692

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef Protocol::endpoint endpoint_type;

raw_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

raw_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,

 GettableSocketOption & option,
 boost::system::error_code & ec) const;

raw_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

raw_socket_service::implementation_type

The type of a raw socket.

typedef implementation_defined implementation_type;

raw_socket_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
 implementation_type & impl,
 IoControlCommand & command,
 boost::system::error_code & ec);

raw_socket_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

693

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & io_service();

raw_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

raw_socket_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

raw_socket_service::native

Get the native socket implementation.

native_type native(
 implementation_type & impl);

raw_socket_service::native_type

The native socket type.

typedef implementation_defined native_type;

raw_socket_service::open

boost::system::error_code open(
 implementation_type & impl,

const protocol_type & protocol,
 boost::system::error_code & ec);

raw_socket_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

raw_socket_service::raw_socket_service

Construct a new raw socket service for the specified io_service.

694

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service(
 boost::asio::io_service & io_service);

raw_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

raw_socket_service::receive_from

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 endpoint_type & sender_endpoint,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

raw_socket_service::remote_endpoint

Get the remote endpoint.

endpoint_type remote_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

raw_socket_service::send

Send the given data to the peer.

template<
typename ConstBufferSequence>

std::size_t send(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

raw_socket_service::send_to

Send raw data to the specified endpoint.

695

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send_to(
 implementation_type & impl,

const ConstBufferSequence & buffers,
const endpoint_type & destination,

 socket_base::message_flags flags,
 boost::system::error_code & ec);

raw_socket_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
 implementation_type & impl,

const SettableSocketOption & option,
 boost::system::error_code & ec);

raw_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 implementation_type & impl,
 socket_base::shutdown_type what,
 boost::system::error_code & ec);

raw_socket_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

read
Attempt to read a certain amount of data from a stream before returning.

696

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename MutableBufferSequence>

std::size_t read(
 SyncReadStream & s,

const MutableBufferSequence & buffers);

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition);

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

template<
typename SyncReadStream,
typename Allocator>

std::size_t read(
 SyncReadStream & s,
 basic_streambuf< Allocator > & b);

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

read (1 of 6 overloads)

Attempt to read a certain amount of data from a stream before returning.

697

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename MutableBufferSequence>

std::size_t read(
 SyncReadStream & s,

const MutableBufferSequence & buffers);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the stream.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read(s, boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::read(
 s, buffers,
 boost::asio::transfer_all());

read (2 of 6 overloads)

Attempt to read a certain amount of data from a stream before returning.

698

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the stream.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read(s, boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

699

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

read (3 of 6 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the stream.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read (4 of 6 overloads)

Attempt to read a certain amount of data from a stream before returning.

700

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator>

std::size_t read(
 SyncReadStream & s,
 basic_streambuf< Allocator > & b);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b The basic_streambuf object into which the data will be read.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

This overload is equivalent to calling:

boost::asio::read(
 s, b,
 boost::asio::transfer_all());

read (5 of 6 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

701

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

read (6 of 6 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
 SyncReadStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

702

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read_at
Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers);

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition);

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

template<
typename SyncRandomAccessReadDevice,
typename Allocator>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b);

template<
typename SyncRandomAccessReadDevice,
typename Allocator,

703

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename CompletionCondition>
std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

read_at (1 of 6 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the device.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

704

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::read_at(d, 42, boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::read_at(
 d, 42, buffers,
 boost::asio::transfer_all());

read_at (2 of 6 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the device.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

705

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read_at(d, 42, boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

read_at (3 of 6 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

706

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the device.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read_at (4 of 6 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename Allocator>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

707

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

This overload is equivalent to calling:

boost::asio::read_at(
 d, 42, b,
 boost::asio::transfer_all());

read_at (5 of 6 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

708

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

read_at (6 of 6 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
 SyncRandomAccessReadDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read_until
Read data into a streambuf until it contains a delimiter, matches a regular expression, or a function object indicates a match.

709

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

char delim);

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

char delim,
 boost::system::error_code & ec);

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const std::string & delim);

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const std::string & delim,
 boost::system::error_code & ec);

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const boost::regex & expr);

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const boost::regex & expr,
 boost::system::error_code & ec);

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,
 MatchCondition match_condition,

typename boost::enable_if< is_match_condition< MatchCondition > >::type * = 0);

template<
typename SyncReadStream,

710

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename Allocator,
typename MatchCondition>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,
 MatchCondition match_condition,
 boost::system::error_code & ec,

typename boost::enable_if< is_match_condition< MatchCondition > >::type * = 0);

read_until (1 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

char delim);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter character.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

Example

To read data into a streambuf until a newline is encountered:

711

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::streambuf b;
boost::asio::read_until(s, b, '\n');
std::istream is(&b);
std::string line;
std::getline(is, line);

read_until (2 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

char delim,
 boost::system::error_code & ec);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter character.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter. Returns 0 if an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

read_until (3 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

712

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const std::string & delim);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter string.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

Example

To read data into a streambuf until a newline is encountered:

boost::asio::streambuf b;
boost::asio::read_until(s, b, "\r\n");
std::istream is(&b);
std::string line;
std::getline(is, line);

read_until (4 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

713

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const std::string & delim,
 boost::system::error_code & ec);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter string.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter. Returns 0 if an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

read_until (5 of 8 overloads)

Read data into a streambuf until some part of the data it contains matches a regular expression.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const boost::regex & expr);

This function is used to read data into the specified streambuf until the streambuf's get area contains some data that matches a regular
expression. The call will block until one of the following conditions is true:

• A substring of the streambuf's get area matches the regular expression.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains data that matches the regular expression, the function returns immediately.

714

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

expr The regular expression.

Return Value

The number of bytes in the streambuf's get area up to and including the substring that matches the regular expression.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the regular expression.
An application will typically leave that data in the streambuf for a subsequent read_until operation to examine.

Example

To read data into a streambuf until a CR-LF sequence is encountered:

boost::asio::streambuf b;
boost::asio::read_until(s, b, boost::regex("\r\n"));
std::istream is(&b);
std::string line;
std::getline(is, line);

read_until (6 of 8 overloads)

Read data into a streambuf until some part of the data it contains matches a regular expression.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,

const boost::regex & expr,
 boost::system::error_code & ec);

This function is used to read data into the specified streambuf until the streambuf's get area contains some data that matches a regular
expression. The call will block until one of the following conditions is true:

• A substring of the streambuf's get area matches the regular expression.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains data that matches the regular expression, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

715

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

expr The regular expression.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area up to and including the substring that matches the regular expression. Returns 0 if
an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the regular expression.
An application will typically leave that data in the streambuf for a subsequent read_until operation to examine.

read_until (7 of 8 overloads)

Read data into a streambuf until a function object indicates a match.

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,
 MatchCondition match_condition,

typename boost::enable_if< is_match_condition< MatchCondition > >::type * = 0);

This function is used to read data into the specified streambuf until a user-defined match condition function object, when applied to
the data contained in the streambuf, indicates a successful match. The call will block until one of the following conditions is true:

• The match condition function object returns a std::pair where the second element evaluates to true.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the match condition function
object already indicates a match, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

match_condition The function object to be called to determine whether a match exists. The signature of the function object
must be:

pair<iterator, bool> match_condition(iterator begin, iterator end);

where iterator represents the type:

buffers_iterator<basic_streambuf<Allocator>::const_buffers_type>

The iterator parameters begin and end define the range of bytes to be scanned to determine whether there
is a match. The first member of the return value is an iterator marking one-past-the-end of the bytes that
have been consumed by the match function. This iterator is used to calculate the begin parameter for any
subsequent invocation of the match condition. The second member of the return value is true if a match
has been found, false otherwise.

716

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes in the streambuf's get area that have been fully consumed by the match function.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the function object.
An application will typically leave that data in the streambuf for a subsequent

The default implementation of the is_match_condition type trait evaluates to true for function pointers and function objects with
a result_type typedef. It must be specialised for other user-defined function objects.

Examples

To read data into a streambuf until whitespace is encountered:

typedef boost::asio::buffers_iterator<
 boost::asio::streambuf::const_buffers_type> iterator;

std::pair<iterator, bool>
match_whitespace(iterator begin, iterator end)
{
 iterator i = begin;
while (i != end)
if (std::isspace(*i++))

return std::make_pair(i, true);
return std::make_pair(i, false);

}
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_whitespace);

To read data into a streambuf until a matching character is found:

717

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class match_char
{
public:
explicit match_char(char c) : c_(c) {}

template <typename Iterator>
 std::pair<Iterator, bool> operator()(
 Iterator begin, Iterator end) const
{

 Iterator i = begin;
while (i != end)

if (c_ == *i++)
return std::make_pair(i, true);

return std::make_pair(i, false);
}

private:
char c_;

};

namespace asio {
template <> struct is_match_condition<match_char>
: public boost::true_type {};

} // namespace asio
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_char('a'));

read_until (8 of 8 overloads)

Read data into a streambuf until a function object indicates a match.

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
 SyncReadStream & s,
 boost::asio::basic_streambuf< Allocator > & b,
 MatchCondition match_condition,
 boost::system::error_code & ec,

typename boost::enable_if< is_match_condition< MatchCondition > >::type * = 0);

This function is used to read data into the specified streambuf until a user-defined match condition function object, when applied to
the data contained in the streambuf, indicates a successful match. The call will block until one of the following conditions is true:

• The match condition function object returns a std::pair where the second element evaluates to true.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the match condition function
object already indicates a match, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

match_condition The function object to be called to determine whether a match exists. The signature of the function object
must be:

718

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

pair<iterator, bool> match_condition(iterator begin, iterator end);

where iterator represents the type:

buffers_iterator<basic_streambuf<Allocator>::const_buffers_type>

The iterator parameters begin and end define the range of bytes to be scanned to determine whether there
is a match. The first member of the return value is an iterator marking one-past-the-end of the bytes that
have been consumed by the match function. This iterator is used to calculate the begin parameter for any
subsequent invocation of the match condition. The second member of the return value is true if a match
has been found, false otherwise.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area that have been fully consumed by the match function. Returns 0 if an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the function object.
An application will typically leave that data in the streambuf for a subsequent

The default implementation of the is_match_condition type trait evaluates to true for function pointers and function objects with
a result_type typedef. It must be specialised for other user-defined function objects.

serial_port
Typedef for the typical usage of a serial port.

typedef basic_serial_port serial_port;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_serial_port is always the lowest layer.lowest_layer_type

The native representation of a serial port.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

719

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native serial port to the serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_serial_port without opening it.

Construct and open a basic_serial_port.

Construct a basic_serial_port on an existing native serial port.

basic_serial_port

Cancel all asynchronous operations associated with the serial
port.

cancel

Close the serial port.close

Get the io_service associated with the object.get_io_service

Get an option from the serial port.get_option

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the serial port is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native serial port representation.native

Open the serial port using the specified device name.open

Read some data from the serial port.read_some

Send a break sequence to the serial port.send_break

Set an option on the serial port.set_option

Write some data to the serial port.write_some

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The basic_serial_port class template provides functionality that is common to all serial ports.

720

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

serial_port_base
The serial_port_base class is used as a base for the basic_serial_port class template so that we have a common place to define the
serial port options.

class serial_port_base

Types

DescriptionName

Serial port option to permit changing the baud rate.baud_rate

Serial port option to permit changing the character size.character_size

Serial port option to permit changing the flow control.flow_control

Serial port option to permit changing the parity.parity

Serial port option to permit changing the number of stop bits.stop_bits

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~serial_port_base

serial_port_base::~serial_port_base

Protected destructor to prevent deletion through this type.

~serial_port_base();

serial_port_base::baud_rate
Serial port option to permit changing the baud rate.

721

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class baud_rate

Member Functions

DescriptionName

baud_rate

load

store

value

Implements changing the baud rate for a given serial port.

serial_port_base::baud_rate::baud_rate

baud_rate(
unsigned int rate = 0);

serial_port_base::baud_rate::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,

 boost::system::error_code & ec);

serial_port_base::baud_rate::store

boost::system::error_code store(
 BOOST_ASIO_OPTION_STORAGE & storage,
 boost::system::error_code & ec) const;

serial_port_base::baud_rate::value

unsigned int value() const;

serial_port_base::character_size
Serial port option to permit changing the character size.

722

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class character_size

Member Functions

DescriptionName

character_size

load

store

value

Implements changing the character size for a given serial port.

serial_port_base::character_size::character_size

character_size(
unsigned int t = 8);

serial_port_base::character_size::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,

 boost::system::error_code & ec);

serial_port_base::character_size::store

boost::system::error_code store(
 BOOST_ASIO_OPTION_STORAGE & storage,
 boost::system::error_code & ec) const;

serial_port_base::character_size::value

unsigned int value() const;

serial_port_base::flow_control
Serial port option to permit changing the flow control.

class flow_control

Types

DescriptionName

type

723

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

flow_control

load

store

value

Implements changing the flow control for a given serial port.

serial_port_base::flow_control::flow_control

flow_control(
 type t = none);

serial_port_base::flow_control::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,

 boost::system::error_code & ec);

serial_port_base::flow_control::store

boost::system::error_code store(
 BOOST_ASIO_OPTION_STORAGE & storage,
 boost::system::error_code & ec) const;

serial_port_base::flow_control::type

enum type

Values

none

software

hardware

serial_port_base::flow_control::value

type value() const;

serial_port_base::parity
Serial port option to permit changing the parity.

724

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class parity

Types

DescriptionName

type

Member Functions

DescriptionName

load

parity

store

value

Implements changing the parity for a given serial port.

serial_port_base::parity::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,

 boost::system::error_code & ec);

serial_port_base::parity::parity

parity(
 type t = none);

serial_port_base::parity::store

boost::system::error_code store(
 BOOST_ASIO_OPTION_STORAGE & storage,
 boost::system::error_code & ec) const;

serial_port_base::parity::type

enum type

Values

none

odd

even

725

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

serial_port_base::parity::value

type value() const;

serial_port_base::stop_bits
Serial port option to permit changing the number of stop bits.

class stop_bits

Types

DescriptionName

type

Member Functions

DescriptionName

load

stop_bits

store

value

Implements changing the number of stop bits for a given serial port.

726

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

serial_port_base::stop_bits::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,

 boost::system::error_code & ec);

serial_port_base::stop_bits::stop_bits

stop_bits(
 type t = one);

serial_port_base::stop_bits::store

boost::system::error_code store(
 BOOST_ASIO_OPTION_STORAGE & storage,
 boost::system::error_code & ec) const;

serial_port_base::stop_bits::type

enum type

Values

one

onepointfive

two

serial_port_base::stop_bits::value

type value() const;

serial_port_service
Default service implementation for a serial port.

class serial_port_service :
public io_service::service

Types

DescriptionName

The type of a serial port implementation.implementation_type

The native handle type.native_type

727

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to a serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Cancel all asynchronous operations associated with the handle.cancel

Close a serial port implementation.close

Construct a new serial port implementation.construct

Destroy a serial port implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a serial port option.get_option

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the handle is open.is_open

Get the native handle implementation.native

Open a serial port.open

Read some data from the stream.read_some

Send a break sequence to the serial port.send_break

Construct a new serial port service for the specified io_service.serial_port_service

Set a serial port option.set_option

Destroy all user-defined handler objects owned by the service.shutdown_service

Write the given data to the stream.write_some

Data Members

DescriptionName

The unique service identifier.id

serial_port_service::assign

Assign an existing native handle to a serial port.

728

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
 implementation_type & impl,

const native_type & native_handle,
 boost::system::error_code & ec);

serial_port_service::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 ReadHandler handler);

serial_port_service::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 WriteHandler handler);

serial_port_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

serial_port_service::close

Close a serial port implementation.

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

serial_port_service::construct

Construct a new serial port implementation.

void construct(
 implementation_type & impl);

serial_port_service::destroy

Destroy a serial port implementation.

729

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void destroy(
 implementation_type & impl);

serial_port_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

serial_port_service::get_option

Get a serial port option.

template<
typename GettableSerialPortOption>

boost::system::error_code get_option(
const implementation_type & impl,

 GettableSerialPortOption & option,
 boost::system::error_code & ec) const;

serial_port_service::id

The unique service identifier.

static boost::asio::io_service::id id;

serial_port_service::implementation_type

The type of a serial port implementation.

typedef implementation_defined implementation_type;

serial_port_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

serial_port_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

serial_port_service::native

Get the native handle implementation.

730

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

native_type native(
 implementation_type & impl);

serial_port_service::native_type

The native handle type.

typedef implementation_defined native_type;

serial_port_service::open

Open a serial port.

boost::system::error_code open(
 implementation_type & impl,

const std::string & device,
 boost::system::error_code & ec);

serial_port_service::read_some

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

serial_port_service::send_break

Send a break sequence to the serial port.

boost::system::error_code send_break(
 implementation_type & impl,
 boost::system::error_code & ec);

serial_port_service::serial_port_service

Construct a new serial port service for the specified io_service.

serial_port_service(
 boost::asio::io_service & io_service);

serial_port_service::set_option

Set a serial port option.

731

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SettableSerialPortOption>

boost::system::error_code set_option(
 implementation_type & impl,

const SettableSerialPortOption & option,
 boost::system::error_code & ec);

serial_port_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

serial_port_service::write_some

Write the given data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

service_already_exists
Exception thrown when trying to add a duplicate service to an io_service.

class service_already_exists

Member Functions

DescriptionName

service_already_exists

service_already_exists::service_already_exists

service_already_exists();

socket_acceptor_service
Default service implementation for a socket acceptor.

732

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol>

class socket_acceptor_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The native type of the socket acceptor.implementation_type

The native acceptor type.native_type

The protocol type.protocol_type

733

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Accept a new connection.accept

Assign an existing native acceptor to a socket acceptor.assign

Start an asynchronous accept.async_accept

Bind the socket acceptor to the specified local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close a socket acceptor implementation.close

Construct a new socket acceptor implementation.construct

Destroy a socket acceptor implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the acceptor is open.is_open

Place the socket acceptor into the state where it will listen for
new connections.

listen

Get the local endpoint.local_endpoint

Get the native acceptor implementation.native

Open a new socket acceptor implementation.open

Set a socket option.set_option

Destroy all user-defined handler objects owned by the service.shutdown_service

Construct a new socket acceptor service for the specified
io_service.

socket_acceptor_service

Data Members

DescriptionName

The unique service identifier.id

socket_acceptor_service::accept

Accept a new connection.

734

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SocketService>

boost::system::error_code accept(
 implementation_type & impl,
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type * peer_endpoint,
 boost::system::error_code & ec);

socket_acceptor_service::assign

Assign an existing native acceptor to a socket acceptor.

boost::system::error_code assign(
 implementation_type & impl,

const protocol_type & protocol,
const native_type & native_acceptor,

 boost::system::error_code & ec);

socket_acceptor_service::async_accept

Start an asynchronous accept.

template<
typename SocketService,
typename AcceptHandler>

void async_accept(
 implementation_type & impl,
 basic_socket< protocol_type, SocketService > & peer,
 endpoint_type * peer_endpoint,
 AcceptHandler handler);

socket_acceptor_service::bind

Bind the socket acceptor to the specified local endpoint.

boost::system::error_code bind(
 implementation_type & impl,

const endpoint_type & endpoint,
 boost::system::error_code & ec);

socket_acceptor_service::cancel

Cancel all asynchronous operations associated with the acceptor.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

socket_acceptor_service::close

Close a socket acceptor implementation.

735

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

socket_acceptor_service::construct

Construct a new socket acceptor implementation.

void construct(
 implementation_type & impl);

socket_acceptor_service::destroy

Destroy a socket acceptor implementation.

void destroy(
 implementation_type & impl);

socket_acceptor_service::endpoint_type

The endpoint type.

typedef protocol_type::endpoint endpoint_type;

socket_acceptor_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

socket_acceptor_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,

 GettableSocketOption & option,
 boost::system::error_code & ec) const;

socket_acceptor_service::id

The unique service identifier.

static boost::asio::io_service::id id;

socket_acceptor_service::implementation_type

The native type of the socket acceptor.

736

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined implementation_type;

socket_acceptor_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
 implementation_type & impl,
 IoControlCommand & command,
 boost::system::error_code & ec);

socket_acceptor_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

socket_acceptor_service::is_open

Determine whether the acceptor is open.

bool is_open(
const implementation_type & impl) const;

socket_acceptor_service::listen

Place the socket acceptor into the state where it will listen for new connections.

boost::system::error_code listen(
 implementation_type & impl,

int backlog,
 boost::system::error_code & ec);

socket_acceptor_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

socket_acceptor_service::native

Get the native acceptor implementation.

737

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

native_type native(
 implementation_type & impl);

socket_acceptor_service::native_type

The native acceptor type.

typedef implementation_defined native_type;

socket_acceptor_service::open

Open a new socket acceptor implementation.

boost::system::error_code open(
 implementation_type & impl,

const protocol_type & protocol,
 boost::system::error_code & ec);

socket_acceptor_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

socket_acceptor_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
 implementation_type & impl,

const SettableSocketOption & option,
 boost::system::error_code & ec);

socket_acceptor_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

socket_acceptor_service::socket_acceptor_service

Construct a new socket acceptor service for the specified io_service.

socket_acceptor_service(
 boost::asio::io_service & io_service);

socket_base
The socket_base class is used as a base for the basic_stream_socket and basic_datagram_socket class templates so that we have a
common place to define the shutdown_type and enum.

738

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class socket_base

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

IO control command to set the blocking mode of the socket.non_blocking_io

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

Different ways a socket may be shutdown.shutdown_type

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~socket_base

739

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

socket_base::broadcast

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

socket_base::bytes_readable

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

740

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

socket_base::debug

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

socket_base::do_not_route

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

741

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

socket_base::enable_connection_aborted

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with boost::asio::error::con-
nection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

socket_base::keep_alive

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

742

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

socket_base::linger

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

socket_base::max_connections

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

socket_base::message_do_not_route

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

socket_base::message_flags

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

socket_base::message_out_of_band

Process out-of-band data.

743

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const int message_out_of_band = implementation_defined;

socket_base::message_peek

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

socket_base::non_blocking_io

IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

socket_base::receive_buffer_size

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

socket_base::receive_low_watermark

Socket option for the receive low watermark.

744

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

socket_base::reuse_address

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

socket_base::send_buffer_size

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

745

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

socket_base::send_low_watermark

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

socket_base::shutdown_type

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

746

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket_base::~socket_base

Protected destructor to prevent deletion through this type.

~socket_base();

ssl::basic_context
SSL context.

template<
typename Service>

class basic_context :
public ssl::context_base

Types

DescriptionName

File format types.file_format

The native implementation type of the locking dispatcher.impl_type

Different methods supported by a context.method

Bitmask type for SSL options.options

Purpose of PEM password.password_purpose

The type of the service that will be used to provide context op-
erations.

service_type

Bitmask type for peer verification.verify_mode

747

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Add a directory containing certificate authority files to be used
for performing verification.

add_verify_path

Constructor.basic_context

Get the underlying implementation in the native type.impl

Load a certification authority file for performing verification.load_verify_file

Set options on the context.set_options

Set the password callback.set_password_callback

Set the peer verification mode.set_verify_mode

Use a certificate chain from a file.use_certificate_chain_file

Use a certificate from a file.use_certificate_file

Use a private key from a file.use_private_key_file

Use an RSA private key from a file.use_rsa_private_key_file

Use the specified file to obtain the temporary Diffie-Hellman
parameters.

use_tmp_dh_file

Destructor.~basic_context

Data Members

DescriptionName

Implement various bug workarounds.default_workarounds

Disable SSL v2.no_sslv2

Disable SSL v3.no_sslv3

Disable TLS v1.no_tlsv1

Always create a new key when using tmp_dh parameters.single_dh_use

Do not request client certificate on renegotiation. Ignored unless
verify_peer is set.

verify_client_once

Fail verification if the peer has no certificate. Ignored unless
verify_peer is set.

verify_fail_if_no_peer_cert

No verification.verify_none

Verify the peer.verify_peer

748

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::basic_context::add_verify_path

Add a directory containing certificate authority files to be used for performing verification.

void add_verify_path(
const std::string & path);

boost::system::error_code add_verify_path(
const std::string & path,

 boost::system::error_code & ec);

ssl::basic_context::add_verify_path (1 of 2 overloads)

Add a directory containing certificate authority files to be used for performing verification.

void add_verify_path(
const std::string & path);

This function is used to specify the name of a directory containing certification authority certificates. Each file in the directory must
contain a single certificate. The files must be named using the subject name's hash and an extension of ".0".

Parameters

path The name of a directory containing the certificates.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::add_verify_path (2 of 2 overloads)

Add a directory containing certificate authority files to be used for performing verification.

boost::system::error_code add_verify_path(
const std::string & path,

 boost::system::error_code & ec);

This function is used to specify the name of a directory containing certification authority certificates. Each file in the directory must
contain a single certificate. The files must be named using the subject name's hash and an extension of ".0".

Parameters

path The name of a directory containing the certificates.

ec Set to indicate what error occurred, if any.

ssl::basic_context::basic_context

Constructor.

basic_context(
 boost::asio::io_service & io_service,
 method m);

ssl::basic_context::default_workarounds

Inherited from ssl::context_base.

749

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implement various bug workarounds.

static const int default_workarounds = implementation_defined;

ssl::basic_context::file_format

Inherited from ssl::context_base.

File format types.

enum file_format

Values

asn1 ASN.1 file.

pem PEM file.

ssl::basic_context::impl

Get the underlying implementation in the native type.

impl_type impl();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to context func-
tionality that is not otherwise provided.

ssl::basic_context::impl_type

The native implementation type of the locking dispatcher.

typedef service_type::impl_type impl_type;

ssl::basic_context::load_verify_file

Load a certification authority file for performing verification.

void load_verify_file(
const std::string & filename);

boost::system::error_code load_verify_file(
const std::string & filename,

 boost::system::error_code & ec);

ssl::basic_context::load_verify_file (1 of 2 overloads)

Load a certification authority file for performing verification.

void load_verify_file(
const std::string & filename);

This function is used to load one or more trusted certification authorities from a file.

750

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

filename The name of a file containing certification authority certificates in PEM format.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::load_verify_file (2 of 2 overloads)

Load a certification authority file for performing verification.

boost::system::error_code load_verify_file(
const std::string & filename,

 boost::system::error_code & ec);

This function is used to load the certificates for one or more trusted certification authorities from a file.

Parameters

filename The name of a file containing certification authority certificates in PEM format.

ec Set to indicate what error occurred, if any.

ssl::basic_context::method

Inherited from ssl::context_base.

Different methods supported by a context.

enum method

Values

sslv2 Generic SSL version 2.

sslv2_client SSL version 2 client.

sslv2_server SSL version 2 server.

sslv3 Generic SSL version 3.

sslv3_client SSL version 3 client.

sslv3_server SSL version 3 server.

tlsv1 Generic TLS version 1.

tlsv1_client TLS version 1 client.

tlsv1_server TLS version 1 server.

sslv23 Generic SSL/TLS.

sslv23_client SSL/TLS client.

sslv23_server SSL/TLS server.

751

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::basic_context::no_sslv2

Inherited from ssl::context_base.

Disable SSL v2.

static const int no_sslv2 = implementation_defined;

ssl::basic_context::no_sslv3

Inherited from ssl::context_base.

Disable SSL v3.

static const int no_sslv3 = implementation_defined;

ssl::basic_context::no_tlsv1

Inherited from ssl::context_base.

Disable TLS v1.

static const int no_tlsv1 = implementation_defined;

ssl::basic_context::options

Inherited from ssl::context_base.

Bitmask type for SSL options.

typedef int options;

ssl::basic_context::password_purpose

Inherited from ssl::context_base.

Purpose of PEM password.

enum password_purpose

Values

for_reading The password is needed for reading/decryption.

for_writing The password is needed for writing/encryption.

ssl::basic_context::service_type

The type of the service that will be used to provide context operations.

752

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef Service service_type;

ssl::basic_context::set_options

Set options on the context.

void set_options(
 options o);

boost::system::error_code set_options(
 options o,
 boost::system::error_code & ec);

ssl::basic_context::set_options (1 of 2 overloads)

Set options on the context.

void set_options(
 options o);

This function may be used to configure the SSL options used by the context.

Parameters

o A bitmask of options. The available option values are defined in the context_base class. The options are bitwise-ored with any
existing value for the options.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::set_options (2 of 2 overloads)

Set options on the context.

boost::system::error_code set_options(
 options o,
 boost::system::error_code & ec);

This function may be used to configure the SSL options used by the context.

Parameters

o A bitmask of options. The available option values are defined in the context_base class. The options are bitwise-ored with any
existing value for the options.

ec Set to indicate what error occurred, if any.

ssl::basic_context::set_password_callback

Set the password callback.

753

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PasswordCallback>

void set_password_callback(
 PasswordCallback callback);

template<
typename PasswordCallback>

boost::system::error_code set_password_callback(
 PasswordCallback callback,
 boost::system::error_code & ec);

ssl::basic_context::set_password_callback (1 of 2 overloads)

Set the password callback.

template<
typename PasswordCallback>

void set_password_callback(
 PasswordCallback callback);

This function is used to specify a callback function to obtain password information about an encrypted key in PEM format.

Parameters

callback The function object to be used for obtaining the password. The function signature of the handler must be:

std::string password_callback(
 std::size_t max_length, // The maximum size for a password.
 password_purpose purpose // Whether password is for reading or writing.
);

The return value of the callback is a string containing the password.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::set_password_callback (2 of 2 overloads)

Set the password callback.

template<
typename PasswordCallback>

boost::system::error_code set_password_callback(
 PasswordCallback callback,
 boost::system::error_code & ec);

This function is used to specify a callback function to obtain password information about an encrypted key in PEM format.

Parameters

callback The function object to be used for obtaining the password. The function signature of the handler must be:

754

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string password_callback(
 std::size_t max_length, // The maximum size for a password.
 password_purpose purpose // Whether password is for reading or writing.
);

The return value of the callback is a string containing the password.

ec Set to indicate what error occurred, if any.

ssl::basic_context::set_verify_mode

Set the peer verification mode.

void set_verify_mode(
 verify_mode v);

boost::system::error_code set_verify_mode(
 verify_mode v,
 boost::system::error_code & ec);

ssl::basic_context::set_verify_mode (1 of 2 overloads)

Set the peer verification mode.

void set_verify_mode(
 verify_mode v);

This function may be used to configure the peer verification mode used by the context.

Parameters

v A bitmask of peer verification modes. The available verify_mode values are defined in the context_base class.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::set_verify_mode (2 of 2 overloads)

Set the peer verification mode.

boost::system::error_code set_verify_mode(
 verify_mode v,
 boost::system::error_code & ec);

This function may be used to configure the peer verification mode used by the context.

Parameters

v A bitmask of peer verification modes. The available verify_mode values are defined in the context_base class.

ec Set to indicate what error occurred, if any.

ssl::basic_context::single_dh_use

Inherited from ssl::context_base.

755

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Always create a new key when using tmp_dh parameters.

static const int single_dh_use = implementation_defined;

ssl::basic_context::use_certificate_chain_file

Use a certificate chain from a file.

void use_certificate_chain_file(
const std::string & filename);

boost::system::error_code use_certificate_chain_file(
const std::string & filename,

 boost::system::error_code & ec);

ssl::basic_context::use_certificate_chain_file (1 of 2 overloads)

Use a certificate chain from a file.

void use_certificate_chain_file(
const std::string & filename);

This function is used to load a certificate chain into the context from a file.

Parameters

filename The name of the file containing the certificate. The file must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::use_certificate_chain_file (2 of 2 overloads)

Use a certificate chain from a file.

boost::system::error_code use_certificate_chain_file(
const std::string & filename,

 boost::system::error_code & ec);

This function is used to load a certificate chain into the context from a file.

Parameters

filename The name of the file containing the certificate. The file must use the PEM format.

ec Set to indicate what error occurred, if any.

ssl::basic_context::use_certificate_file

Use a certificate from a file.

756

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_certificate_file(
const std::string & filename,

 file_format format);

boost::system::error_code use_certificate_file(
const std::string & filename,

 file_format format,
 boost::system::error_code & ec);

ssl::basic_context::use_certificate_file (1 of 2 overloads)

Use a certificate from a file.

void use_certificate_file(
const std::string & filename,

 file_format format);

This function is used to load a certificate into the context from a file.

Parameters

filename The name of the file containing the certificate.

format The file format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::use_certificate_file (2 of 2 overloads)

Use a certificate from a file.

boost::system::error_code use_certificate_file(
const std::string & filename,

 file_format format,
 boost::system::error_code & ec);

This function is used to load a certificate into the context from a file.

Parameters

filename The name of the file containing the certificate.

format The file format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

ssl::basic_context::use_private_key_file

Use a private key from a file.

757

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_private_key_file(
const std::string & filename,

 file_format format);

boost::system::error_code use_private_key_file(
const std::string & filename,

 file_format format,
 boost::system::error_code & ec);

ssl::basic_context::use_private_key_file (1 of 2 overloads)

Use a private key from a file.

void use_private_key_file(
const std::string & filename,

 file_format format);

This function is used to load a private key into the context from a file.

Parameters

filename The name of the file containing the private key.

format The file format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::use_private_key_file (2 of 2 overloads)

Use a private key from a file.

boost::system::error_code use_private_key_file(
const std::string & filename,

 file_format format,
 boost::system::error_code & ec);

This function is used to load a private key into the context from a file.

Parameters

filename The name of the file containing the private key.

format The file format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

ssl::basic_context::use_rsa_private_key_file

Use an RSA private key from a file.

758

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_rsa_private_key_file(
const std::string & filename,

 file_format format);

boost::system::error_code use_rsa_private_key_file(
const std::string & filename,

 file_format format,
 boost::system::error_code & ec);

ssl::basic_context::use_rsa_private_key_file (1 of 2 overloads)

Use an RSA private key from a file.

void use_rsa_private_key_file(
const std::string & filename,

 file_format format);

This function is used to load an RSA private key into the context from a file.

Parameters

filename The name of the file containing the RSA private key.

format The file format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::use_rsa_private_key_file (2 of 2 overloads)

Use an RSA private key from a file.

boost::system::error_code use_rsa_private_key_file(
const std::string & filename,

 file_format format,
 boost::system::error_code & ec);

This function is used to load an RSA private key into the context from a file.

Parameters

filename The name of the file containing the RSA private key.

format The file format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

ssl::basic_context::use_tmp_dh_file

Use the specified file to obtain the temporary Diffie-Hellman parameters.

759

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_tmp_dh_file(
const std::string & filename);

boost::system::error_code use_tmp_dh_file(
const std::string & filename,

 boost::system::error_code & ec);

ssl::basic_context::use_tmp_dh_file (1 of 2 overloads)

Use the specified file to obtain the temporary Diffie-Hellman parameters.

void use_tmp_dh_file(
const std::string & filename);

This function is used to load Diffie-Hellman parameters into the context from a file.

Parameters

filename The name of the file containing the Diffie-Hellman parameters. The file must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

ssl::basic_context::use_tmp_dh_file (2 of 2 overloads)

Use the specified file to obtain the temporary Diffie-Hellman parameters.

boost::system::error_code use_tmp_dh_file(
const std::string & filename,

 boost::system::error_code & ec);

This function is used to load Diffie-Hellman parameters into the context from a file.

Parameters

filename The name of the file containing the Diffie-Hellman parameters. The file must use the PEM format.

ec Set to indicate what error occurred, if any.

ssl::basic_context::verify_client_once

Inherited from ssl::context_base.

Do not request client certificate on renegotiation. Ignored unless verify_peer is set.

static const int verify_client_once = implementation_defined;

ssl::basic_context::verify_fail_if_no_peer_cert

Inherited from ssl::context_base.

Fail verification if the peer has no certificate. Ignored unless verify_peer is set.

760

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const int verify_fail_if_no_peer_cert = implementation_defined;

ssl::basic_context::verify_mode

Inherited from ssl::context_base.

Bitmask type for peer verification.

typedef int verify_mode;

ssl::basic_context::verify_none

Inherited from ssl::context_base.

No verification.

static const int verify_none = implementation_defined;

ssl::basic_context::verify_peer

Inherited from ssl::context_base.

Verify the peer.

static const int verify_peer = implementation_defined;

ssl::basic_context::~basic_context

Destructor.

~basic_context();

ssl::context
Typedef for the typical usage of context.

761

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_context< context_service > context;

Types

DescriptionName

File format types.file_format

The native implementation type of the locking dispatcher.impl_type

Different methods supported by a context.method

Bitmask type for SSL options.options

Purpose of PEM password.password_purpose

The type of the service that will be used to provide context op-
erations.

service_type

Bitmask type for peer verification.verify_mode

Member Functions

DescriptionName

Add a directory containing certificate authority files to be used
for performing verification.

add_verify_path

Constructor.basic_context

Get the underlying implementation in the native type.impl

Load a certification authority file for performing verification.load_verify_file

Set options on the context.set_options

Set the password callback.set_password_callback

Set the peer verification mode.set_verify_mode

Use a certificate chain from a file.use_certificate_chain_file

Use a certificate from a file.use_certificate_file

Use a private key from a file.use_private_key_file

Use an RSA private key from a file.use_rsa_private_key_file

Use the specified file to obtain the temporary Diffie-Hellman
parameters.

use_tmp_dh_file

Destructor.~basic_context

762

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Implement various bug workarounds.default_workarounds

Disable SSL v2.no_sslv2

Disable SSL v3.no_sslv3

Disable TLS v1.no_tlsv1

Always create a new key when using tmp_dh parameters.single_dh_use

Do not request client certificate on renegotiation. Ignored unless
verify_peer is set.

verify_client_once

Fail verification if the peer has no certificate. Ignored unless
verify_peer is set.

verify_fail_if_no_peer_cert

No verification.verify_none

Verify the peer.verify_peer

ssl::context_base
The context_base class is used as a base for the basic_context class template so that we have a common place to define various
enums.

class context_base

Types

DescriptionName

File format types.file_format

Different methods supported by a context.method

Bitmask type for SSL options.options

Purpose of PEM password.password_purpose

Bitmask type for peer verification.verify_mode

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~context_base

763

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Implement various bug workarounds.default_workarounds

Disable SSL v2.no_sslv2

Disable SSL v3.no_sslv3

Disable TLS v1.no_tlsv1

Always create a new key when using tmp_dh parameters.single_dh_use

Do not request client certificate on renegotiation. Ignored unless
verify_peer is set.

verify_client_once

Fail verification if the peer has no certificate. Ignored unless
verify_peer is set.

verify_fail_if_no_peer_cert

No verification.verify_none

Verify the peer.verify_peer

ssl::context_base::default_workarounds

Implement various bug workarounds.

static const int default_workarounds = implementation_defined;

ssl::context_base::file_format

File format types.

enum file_format

Values

asn1 ASN.1 file.

pem PEM file.

ssl::context_base::method

Different methods supported by a context.

enum method

Values

sslv2 Generic SSL version 2.

sslv2_client SSL version 2 client.

sslv2_server SSL version 2 server.

764

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

sslv3 Generic SSL version 3.

sslv3_client SSL version 3 client.

sslv3_server SSL version 3 server.

tlsv1 Generic TLS version 1.

tlsv1_client TLS version 1 client.

tlsv1_server TLS version 1 server.

sslv23 Generic SSL/TLS.

sslv23_client SSL/TLS client.

sslv23_server SSL/TLS server.

ssl::context_base::no_sslv2

Disable SSL v2.

static const int no_sslv2 = implementation_defined;

ssl::context_base::no_sslv3

Disable SSL v3.

static const int no_sslv3 = implementation_defined;

ssl::context_base::no_tlsv1

Disable TLS v1.

static const int no_tlsv1 = implementation_defined;

ssl::context_base::options

Bitmask type for SSL options.

typedef int options;

ssl::context_base::password_purpose

Purpose of PEM password.

enum password_purpose

Values

for_reading The password is needed for reading/decryption.

for_writing The password is needed for writing/encryption.

765

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context_base::single_dh_use

Always create a new key when using tmp_dh parameters.

static const int single_dh_use = implementation_defined;

ssl::context_base::verify_client_once

Do not request client certificate on renegotiation. Ignored unless verify_peer is set.

static const int verify_client_once = implementation_defined;

ssl::context_base::verify_fail_if_no_peer_cert

Fail verification if the peer has no certificate. Ignored unless verify_peer is set.

static const int verify_fail_if_no_peer_cert = implementation_defined;

ssl::context_base::verify_mode

Bitmask type for peer verification.

typedef int verify_mode;

ssl::context_base::verify_none

No verification.

static const int verify_none = implementation_defined;

ssl::context_base::verify_peer

Verify the peer.

static const int verify_peer = implementation_defined;

ssl::context_base::~context_base

Protected destructor to prevent deletion through this type.

~context_base();

ssl::context_service
Default service implementation for a context.

766

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class context_service :
public io_service::service

Types

DescriptionName

The type of the context.impl_type

Member Functions

DescriptionName

Add a directory containing certification authority files to be
used for performing verification.

add_verify_path

Constructor.context_service

Create a new context implementation.create

Destroy a context implementation.destroy

Get the io_service object that owns the service.get_io_service

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Load a certification authority file for performing verification.load_verify_file

Return a null context implementation.null

Set options on the context.set_options

Set the password callback.set_password_callback

Set peer verification mode.set_verify_mode

Destroy all user-defined handler objects owned by the service.shutdown_service

Use a certificate chain from a file.use_certificate_chain_file

Use a certificate from a file.use_certificate_file

Use a private key from a file.use_private_key_file

Use an RSA private key from a file.use_rsa_private_key_file

Use the specified file to obtain the temporary Diffie-Hellman
parameters.

use_tmp_dh_file

Data Members

DescriptionName

The unique service identifier.id

767

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context_service::add_verify_path

Add a directory containing certification authority files to be used for performing verification.

boost::system::error_code add_verify_path(
 impl_type & impl,

const std::string & path,
 boost::system::error_code & ec);

ssl::context_service::context_service

Constructor.

context_service(
 boost::asio::io_service & io_service);

ssl::context_service::create

Create a new context implementation.

void create(
 impl_type & impl,
 context_base::method m);

ssl::context_service::destroy

Destroy a context implementation.

void destroy(
 impl_type & impl);

ssl::context_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

ssl::context_service::id

The unique service identifier.

static boost::asio::io_service::id id;

ssl::context_service::impl_type

The type of the context.

768

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined impl_type;

ssl::context_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

ssl::context_service::load_verify_file

Load a certification authority file for performing verification.

boost::system::error_code load_verify_file(
 impl_type & impl,

const std::string & filename,
 boost::system::error_code & ec);

ssl::context_service::null

Return a null context implementation.

impl_type null() const;

ssl::context_service::set_options

Set options on the context.

boost::system::error_code set_options(
 impl_type & impl,
 context_base::options o,
 boost::system::error_code & ec);

ssl::context_service::set_password_callback

Set the password callback.

template<
typename PasswordCallback>

boost::system::error_code set_password_callback(
 impl_type & impl,
 PasswordCallback callback,
 boost::system::error_code & ec);

ssl::context_service::set_verify_mode

Set peer verification mode.

769

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code set_verify_mode(
 impl_type & impl,
 context_base::verify_mode v,
 boost::system::error_code & ec);

ssl::context_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

ssl::context_service::use_certificate_chain_file

Use a certificate chain from a file.

boost::system::error_code use_certificate_chain_file(
 impl_type & impl,

const std::string & filename,
 boost::system::error_code & ec);

ssl::context_service::use_certificate_file

Use a certificate from a file.

boost::system::error_code use_certificate_file(
 impl_type & impl,

const std::string & filename,
 context_base::file_format format,
 boost::system::error_code & ec);

ssl::context_service::use_private_key_file

Use a private key from a file.

boost::system::error_code use_private_key_file(
 impl_type & impl,

const std::string & filename,
 context_base::file_format format,
 boost::system::error_code & ec);

ssl::context_service::use_rsa_private_key_file

Use an RSA private key from a file.

boost::system::error_code use_rsa_private_key_file(
 impl_type & impl,

const std::string & filename,
 context_base::file_format format,
 boost::system::error_code & ec);

ssl::context_service::use_tmp_dh_file

Use the specified file to obtain the temporary Diffie-Hellman parameters.

770

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code use_tmp_dh_file(
 impl_type & impl,

const std::string & filename,
 boost::system::error_code & ec);

ssl::stream
Provides stream-oriented functionality using SSL.

template<
typename Stream,
typename Service = stream_service>

class stream :
public ssl::stream_base

Types

DescriptionName

Different handshake types.handshake_type

The native implementation type of the stream.impl_type

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

The type of the service that will be used to provide stream oper-
ations.

service_type

771

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous SSL handshake.async_handshake

Start an asynchronous read.async_read_some

Asynchronously shut down SSL on the stream.async_shutdown

Start an asynchronous write.async_write_some

Get the io_service associated with the object.get_io_service

Perform SSL handshaking.handshake

Get the underlying implementation in the native type.impl

Determine the amount of data that may be read without blocking.in_avail

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream.peek

Read some data from the stream.read_some

Shut down SSL on the stream.shutdown

Construct a stream.stream

Write some data to the stream.write_some

Destructor.~stream

The stream class template provides asynchronous and blocking stream-oriented functionality using SSL.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

To use the SSL stream template with an ip::tcp::socket, you would write:

772

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service io_service;
boost::asio::ssl::context context(io_service, boost::asio::ssl::context::sslv23);
boost::asio::ssl::stream<boost::asio::ip::tcp::socket> sock(io_service, context);

ssl::stream::async_handshake

Start an asynchronous SSL handshake.

template<
typename HandshakeHandler>

void async_handshake(
 handshake_type type,
 HandshakeHandler handler);

This function is used to asynchronously perform an SSL handshake on the stream. This function call always returns immediately.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

handler The handler to be called when the handshake operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

ssl::stream::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously read one or more bytes of data from the stream. The function call always returns immediately.

Parameters

buffers The buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership of the
underlying buffers is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The equi-
valent function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes read.
);

773

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The async_read_some operation may not read all of the requested number of bytes. Consider using the async_read function if you
need to ensure that the requested amount of data is read before the asynchronous operation completes.

ssl::stream::async_shutdown

Asynchronously shut down SSL on the stream.

template<
typename ShutdownHandler>

void async_shutdown(
 ShutdownHandler handler);

This function is used to asynchronously shut down SSL on the stream. This function call always returns immediately.

Parameters

handler The handler to be called when the handshake operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

ssl::stream::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to asynchronously write one or more bytes of data to the stream. The function call always returns immediately.

Parameters

buffers The data to be written to the stream. Although the buffers object may be copied as necessary, ownership of the under-
lying buffers is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written.
);

Remarks

The async_write_some operation may not transmit all of the data to the peer. Consider using the async_write function if you need
to ensure that all data is written before the blocking operation completes.

774

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the stream uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that stream will use to dispatch handlers. Ownership is not transferred to the caller.

ssl::stream::handshake

Perform SSL handshaking.

void handshake(
 handshake_type type);

boost::system::error_code handshake(
 handshake_type type,
 boost::system::error_code & ec);

ssl::stream::handshake (1 of 2 overloads)

Perform SSL handshaking.

void handshake(
 handshake_type type);

This function is used to perform SSL handshaking on the stream. The function call will block until handshaking is complete or an
error occurs.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::handshake (2 of 2 overloads)

Perform SSL handshaking.

boost::system::error_code handshake(
 handshake_type type,
 boost::system::error_code & ec);

This function is used to perform SSL handshaking on the stream. The function call will block until handshaking is complete or an
error occurs.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

ec Set to indicate what error occurred, if any.

775

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::handshake_type

Different handshake types.

enum handshake_type

Values

client Perform handshaking as a client.

server Perform handshaking as a server.

ssl::stream::impl

Get the underlying implementation in the native type.

impl_type impl();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to stream func-
tionality that is not otherwise provided.

ssl::stream::impl_type

The native implementation type of the stream.

typedef service_type::impl_type impl_type;

ssl::stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

std::size_t in_avail(
 boost::system::error_code & ec);

ssl::stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

This function is used to determine the amount of data, in bytes, that may be read from the stream without blocking.

Return Value

The number of bytes of data that can be read without blocking.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

776

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t in_avail(
 boost::system::error_code & ec);

This function is used to determine the amount of data, in bytes, that may be read from the stream without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes of data that can be read without blocking.

ssl::stream::io_service

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the stream uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that stream will use to dispatch handlers. Ownership is not transferred to the caller.

ssl::stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

ssl::stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of stream layers.

Return Value

A reference to the lowest layer in the stack of stream layers. Ownership is not transferred to the caller.

ssl::stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of stream layers.

777

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A const reference to the lowest layer in the stack of stream layers. Ownership is not transferred to the caller.

ssl::stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

ssl::stream::next_layer

Get a reference to the next layer.

next_layer_type & next_layer();

This function returns a reference to the next layer in a stack of stream layers.

Return Value

A reference to the next layer in the stack of stream layers. Ownership is not transferred to the caller.

ssl::stream::next_layer_type

The type of the next layer.

typedef boost::remove_reference< Stream >::type next_layer_type;

ssl::stream::peek

Peek at the incoming data on the stream.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

ssl::stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

This function is used to peek at the incoming data on the stream, without removing it from the input queue. The function call will
block until data has been read successfully or an error occurs.

778

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers The buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to peek at the incoming data on the stream, withoutxi removing it from the input queue. The function call will
block until data has been read successfully or an error occurs.

Parameters

buffers The buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

ssl::stream::read_some

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

ssl::stream::read_some (1 of 2 overloads)

Read some data from the stream.

779

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream. The function call will block until one or more bytes of data has been read success-
fully, or until an error occurs.

Parameters

buffers The buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

ssl::stream::read_some (2 of 2 overloads)

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to read data from the stream. The function call will block until one or more bytes of data has been read success-
fully, or until an error occurs.

Parameters

buffers The buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

ssl::stream::service_type

The type of the service that will be used to provide stream operations.

780

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef Service service_type;

ssl::stream::shutdown

Shut down SSL on the stream.

void shutdown();

boost::system::error_code shutdown(
 boost::system::error_code & ec);

ssl::stream::shutdown (1 of 2 overloads)

Shut down SSL on the stream.

void shutdown();

This function is used to shut down SSL on the stream. The function call will block until SSL has been shut down or an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::shutdown (2 of 2 overloads)

Shut down SSL on the stream.

boost::system::error_code shutdown(
 boost::system::error_code & ec);

This function is used to shut down SSL on the stream. The function call will block until SSL has been shut down or an error occurs.

Parameters

ec Set to indicate what error occurred, if any.

ssl::stream::stream

Construct a stream.

template<
typename Arg,
typename Context_Service>

stream(
 Arg & arg,
 basic_context< Context_Service > & context);

This constructor creates a stream and initialises the underlying stream object.

Parameters

arg The argument to be passed to initialise the underlying stream.

context The SSL context to be used for the stream.

781

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::write_some

Write some data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

ssl::stream::write_some (1 of 2 overloads)

Write some data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data on the stream. The function call will block until one or more bytes of data has been written suc-
cessfully, or until an error occurs.

Parameters

buffers The data to be written.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

ssl::stream::write_some (2 of 2 overloads)

Write some data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to write data on the stream. The function call will block until one or more bytes of data has been written suc-
cessfully, or until an error occurs.

782

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers The data to be written to the stream.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

ssl::stream::~stream

Destructor.

~stream();

ssl::stream_base
The stream_base class is used as a base for the boost::asio::ssl::stream class template so that we have a common place to define
various enums.

class stream_base

Types

DescriptionName

Different handshake types.handshake_type

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~stream_base

ssl::stream_base::handshake_type

Different handshake types.

enum handshake_type

Values

client Perform handshaking as a client.

server Perform handshaking as a server.

783

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream_base::~stream_base

Protected destructor to prevent deletion through this type.

~stream_base();

ssl::stream_service
Default service implementation for an SSL stream.

class stream_service :
public io_service::service

Types

DescriptionName

The type of a stream implementation.impl_type

784

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous SSL handshake.async_handshake

Start an asynchronous read.async_read_some

Asynchronously shut down SSL on the stream.async_shutdown

Start an asynchronous write.async_write_some

Create a new stream implementation.create

Destroy a stream implementation.destroy

Get the io_service object that owns the service.get_io_service

Perform SSL handshaking.handshake

Determine the amount of data that may be read without blocking.in_avail

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Return a null stream implementation.null

Peek at the incoming data on the stream.peek

Read some data from the stream.read_some

Shut down SSL on the stream.shutdown

Destroy all user-defined handler objects owned by the service.shutdown_service

Construct a new stream service for the specified io_service.stream_service

Write some data to the stream.write_some

Data Members

DescriptionName

The unique service identifier.id

ssl::stream_service::async_handshake

Start an asynchronous SSL handshake.

785

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Stream,
typename HandshakeHandler>

void async_handshake(
 impl_type & impl,
 Stream & next_layer,
 stream_base::handshake_type type,
 HandshakeHandler handler);

ssl::stream_service::async_read_some

Start an asynchronous read.

template<
typename Stream,
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
 impl_type & impl,
 Stream & next_layer,

const MutableBufferSequence & buffers,
 ReadHandler handler);

ssl::stream_service::async_shutdown

Asynchronously shut down SSL on the stream.

template<
typename Stream,
typename ShutdownHandler>

void async_shutdown(
 impl_type & impl,
 Stream & next_layer,
 ShutdownHandler handler);

ssl::stream_service::async_write_some

Start an asynchronous write.

template<
typename Stream,
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
 impl_type & impl,
 Stream & next_layer,

const ConstBufferSequence & buffers,
 WriteHandler handler);

ssl::stream_service::create

Create a new stream implementation.

786

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Stream,
typename Context_Service>

void create(
 impl_type & impl,
 Stream & next_layer,
 basic_context< Context_Service > & context);

ssl::stream_service::destroy

Destroy a stream implementation.

template<
typename Stream>

void destroy(
 impl_type & impl,
 Stream & next_layer);

ssl::stream_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

ssl::stream_service::handshake

Perform SSL handshaking.

template<
typename Stream>

boost::system::error_code handshake(
 impl_type & impl,
 Stream & next_layer,
 stream_base::handshake_type type,
 boost::system::error_code & ec);

ssl::stream_service::id

The unique service identifier.

static boost::asio::io_service::id id;

ssl::stream_service::impl_type

The type of a stream implementation.

typedef implementation_defined impl_type;

ssl::stream_service::in_avail

Determine the amount of data that may be read without blocking.

787

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Stream>

std::size_t in_avail(
 impl_type & impl,
 Stream & next_layer,
 boost::system::error_code & ec);

ssl::stream_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

ssl::stream_service::null

Return a null stream implementation.

impl_type null() const;

ssl::stream_service::peek

Peek at the incoming data on the stream.

template<
typename Stream,
typename MutableBufferSequence>

std::size_t peek(
 impl_type & impl,
 Stream & next_layer,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

ssl::stream_service::read_some

Read some data from the stream.

template<
typename Stream,
typename MutableBufferSequence>

std::size_t read_some(
 impl_type & impl,
 Stream & next_layer,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

ssl::stream_service::shutdown

Shut down SSL on the stream.

788

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Stream>

boost::system::error_code shutdown(
 impl_type & impl,
 Stream & next_layer,
 boost::system::error_code & ec);

ssl::stream_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

ssl::stream_service::stream_service

Construct a new stream service for the specified io_service.

stream_service(
 boost::asio::io_service & io_service);

ssl::stream_service::write_some

Write some data to the stream.

template<
typename Stream,
typename ConstBufferSequence>

std::size_t write_some(
 impl_type & impl,
 Stream & next_layer,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

strand
Typedef for backwards compatibility.

789

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::asio::io_service::strand strand;

Member Functions

DescriptionName

Request the strand to invoke the given handler.dispatch

Get the io_service associated with the strand.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the strand.

io_service

Request the strand to invoke the given handler and return imme-
diately.

post

Constructor.strand

Create a new handler that automatically dispatches the wrapped
handler on the strand.

wrap

Destructor.~strand

The io_service::strand class provides the ability to post and dispatch handlers with the guarantee that none of those handlers will
execute concurrently.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

stream_socket_service
Default service implementation for a stream socket.

template<
typename Protocol>

class stream_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a stream socket implementation.implementation_type

The native socket type.native_type

The protocol type.protocol_type

790

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

791

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a stream socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Bind the stream socket to the specified local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close a stream socket implementation.close

Connect the stream socket to the specified endpoint.connect

Construct a new stream socket implementation.construct

Destroy a stream socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Get the native socket implementation.native

Open a stream socket.open

Receive some data from the peer.receive

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Destroy all user-defined handler objects owned by the service.shutdown_service

Construct a new stream socket service for the specified io_ser-
vice.

stream_socket_service

792

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The unique service identifier.id

stream_socket_service::assign

Assign an existing native socket to a stream socket.

boost::system::error_code assign(
 implementation_type & impl,

const protocol_type & protocol,
const native_type & native_socket,

 boost::system::error_code & ec);

stream_socket_service::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void async_connect(
 implementation_type & impl,

const endpoint_type & peer_endpoint,
 ConnectHandler handler);

stream_socket_service::async_receive

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_receive(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 socket_base::message_flags flags,
 ReadHandler handler);

stream_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_send(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 socket_base::message_flags flags,
 WriteHandler handler);

stream_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

793

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool at_mark(
const implementation_type & impl,

 boost::system::error_code & ec) const;

stream_socket_service::available

Determine the number of bytes available for reading.

std::size_t available(
const implementation_type & impl,

 boost::system::error_code & ec) const;

stream_socket_service::bind

Bind the stream socket to the specified local endpoint.

boost::system::error_code bind(
 implementation_type & impl,

const endpoint_type & endpoint,
 boost::system::error_code & ec);

stream_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

stream_socket_service::close

Close a stream socket implementation.

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

stream_socket_service::connect

Connect the stream socket to the specified endpoint.

boost::system::error_code connect(
 implementation_type & impl,

const endpoint_type & peer_endpoint,
 boost::system::error_code & ec);

stream_socket_service::construct

Construct a new stream socket implementation.

794

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void construct(
 implementation_type & impl);

stream_socket_service::destroy

Destroy a stream socket implementation.

void destroy(
 implementation_type & impl);

stream_socket_service::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

stream_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

stream_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,

 GettableSocketOption & option,
 boost::system::error_code & ec) const;

stream_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

stream_socket_service::implementation_type

The type of a stream socket implementation.

typedef implementation_defined implementation_type;

stream_socket_service::io_control

Perform an IO control command on the socket.

795

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

boost::system::error_code io_control(
 implementation_type & impl,
 IoControlCommand & command,
 boost::system::error_code & ec);

stream_socket_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

stream_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

stream_socket_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

stream_socket_service::native

Get the native socket implementation.

native_type native(
 implementation_type & impl);

stream_socket_service::native_type

The native socket type.

typedef implementation_defined native_type;

stream_socket_service::open

Open a stream socket.

796

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
 implementation_type & impl,

const protocol_type & protocol,
 boost::system::error_code & ec);

stream_socket_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

stream_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

stream_socket_service::remote_endpoint

Get the remote endpoint.

endpoint_type remote_endpoint(
const implementation_type & impl,

 boost::system::error_code & ec) const;

stream_socket_service::send

Send the given data to the peer.

template<
typename ConstBufferSequence>

std::size_t send(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 socket_base::message_flags flags,
 boost::system::error_code & ec);

stream_socket_service::set_option

Set a socket option.

797

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SettableSocketOption>

boost::system::error_code set_option(
 implementation_type & impl,

const SettableSocketOption & option,
 boost::system::error_code & ec);

stream_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
 implementation_type & impl,
 socket_base::shutdown_type what,
 boost::system::error_code & ec);

stream_socket_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

stream_socket_service::stream_socket_service

Construct a new stream socket service for the specified io_service.

stream_socket_service(
 boost::asio::io_service & io_service);

streambuf
Typedef for the typical usage of basic_streambuf.

typedef basic_streambuf streambuf;

Types

DescriptionName

The type used to represent the input sequence as a list of buffers.const_buffers_type

The type used to represent the output sequence as a list of buf-
fers.

mutable_buffers_type

798

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct a basic_streambuf object.basic_streambuf

Move characters from the output sequence to the input sequence.commit

Remove characters from the input sequence.consume

Get a list of buffers that represents the input sequence.data

Get the maximum size of the basic_streambuf.max_size

Get a list of buffers that represents the output sequence, with
the given size.

prepare

Get the size of the input sequence.size

Protected Member Functions

DescriptionName

Override std::streambuf behaviour.overflow

reserve

Override std::streambuf behaviour.underflow

The basic_streambuf class is derived from std::streambuf to associate the streambuf's input and output sequences with one
or more character arrays. These character arrays are internal to the basic_streambuf object, but direct access to the array elements
is provided to permit them to be used efficiently with I/O operations. Characters written to the output sequence of a basic_stre-
ambuf object are appended to the input sequence of the same object.

The basic_streambuf class's public interface is intended to permit the following implementation strategies:

• A single contiguous character array, which is reallocated as necessary to accommodate changes in the size of the character sequence.
This is the implementation approach currently used in Asio.

• A sequence of one or more character arrays, where each array is of the same size. Additional character array objects are appended
to the sequence to accommodate changes in the size of the character sequence.

• A sequence of one or more character arrays of varying sizes. Additional character array objects are appended to the sequence to
accommodate changes in the size of the character sequence.

The constructor for basic_streambuf accepts a size_t argument specifying the maximum of the sum of the sizes of the input sequence
and output sequence. During the lifetime of the basic_streambuf object, the following invariant holds:

size() <= max_size()

Any member function that would, if successful, cause the invariant to be violated shall throw an exception of class
std::length_error.

The constructor for basic_streambuf takes an Allocator argument. A copy of this argument is used for any memory allocation
performed, by the constructor and by all member functions, during the lifetime of each basic_streambuf object.

799

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Writing directly from an streambuf to a socket:

boost::asio::streambuf b;
std::ostream os(&b);
os << "Hello, World!\n";

// try sending some data in input sequence
size_t n = sock.send(b.data());

b.consume(n); // sent data is removed from input sequence

Reading from a socket directly into a streambuf:

boost::asio::streambuf b;

// reserve 512 bytes in output sequence
boost::asio::streambuf::const_buffers_type bufs = b.prepare(512);

size_t n = sock.receive(bufs);

// received data is "committed" from output sequence to input sequence
b.commit(n);

std::istream is(&b);
std::string s;
is >> s;

time_traits< boost::posix_time::ptime >
Time traits specialised for posix_time.

template<>
struct time_traits< boost::posix_time::ptime >

Types

DescriptionName

The duration type.duration_type

The time type.time_type

800

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Add a duration to a time.add

Test whether one time is less than another.less_than

Get the current time.now

Subtract one time from another.subtract

Convert to POSIX duration type.to_posix_duration

time_traits< boost::posix_time::ptime >::add

Add a duration to a time.

static time_type add(
const time_type & t,
const duration_type & d);

time_traits< boost::posix_time::ptime >::duration_type

The duration type.

typedef boost::posix_time::time_duration duration_type;

time_traits< boost::posix_time::ptime >::less_than

Test whether one time is less than another.

static bool less_than(
const time_type & t1,
const time_type & t2);

time_traits< boost::posix_time::ptime >::now

Get the current time.

static time_type now();

time_traits< boost::posix_time::ptime >::subtract

Subtract one time from another.

static duration_type subtract(
const time_type & t1,
const time_type & t2);

time_traits< boost::posix_time::ptime >::time_type

The time type.

801

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::posix_time::ptime time_type;

time_traits< boost::posix_time::ptime >::to_posix_duration

Convert to POSIX duration type.

static boost::posix_time::time_duration to_posix_duration(
const duration_type & d);

transfer_all
Return a completion condition function object that indicates that a read or write operation should continue until all of the data has
been transferred, or until an error occurs.

unspecified transfer_all();

This function is used to create an object, of unspecified type, that meets CompletionCondition requirements.

Example

Reading until a buffer is full:

boost::array<char, 128> buf;
boost::system::error_code ec;
std::size_t n = boost::asio::read(
 sock, boost::asio::buffer(buf),
 boost::asio::transfer_all(), ec);
if (ec)
{
// An error occurred.

}
else
{
// n == 128

}

transfer_at_least
Return a completion condition function object that indicates that a read or write operation should continue until a minimum number
of bytes has been transferred, or until an error occurs.

unspecified transfer_at_least(
 std::size_t minimum);

This function is used to create an object, of unspecified type, that meets CompletionCondition requirements.

Example

Reading until a buffer is full or contains at least 64 bytes:

802

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::array<char, 128> buf;
boost::system::error_code ec;
std::size_t n = boost::asio::read(
 sock, boost::asio::buffer(buf),
 boost::asio::transfer_at_least(64), ec);
if (ec)
{
// An error occurred.

}
else
{
// n >= 64 && n <= 128

}

use_service

template<
typename Service>

Service & use_service(
 io_service & ios);

This function is used to locate a service object that corresponds to the given service type. If there is no existing implementation of
the service, then the io_service will create a new instance of the service.

Parameters

ios The io_service object that owns the service.

Return Value

The service interface implementing the specified service type. Ownership of the service interface is not transferred to the caller.

windows::basic_handle
Provides Windows handle functionality.

template<
typename HandleService>

class basic_handle :
public basic_io_object< HandleService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

803

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::basic_handle::assign

Assign an existing native handle to the handle.

804

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const native_type & native_handle);

boost::system::error_code assign(
const native_type & native_handle,

 boost::system::error_code & ec);

windows::basic_handle::assign (1 of 2 overloads)

Assign an existing native handle to the handle.

void assign(
const native_type & native_handle);

windows::basic_handle::assign (2 of 2 overloads)

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_type & native_handle,

 boost::system::error_code & ec);

windows::basic_handle::basic_handle

Construct a basic_handle without opening it.

basic_handle(
 boost::asio::io_service & io_service);

Construct a basic_handle on an existing native handle.

basic_handle(
 boost::asio::io_service & io_service,

const native_type & native_handle);

windows::basic_handle::basic_handle (1 of 2 overloads)

Construct a basic_handle without opening it.

basic_handle(
 boost::asio::io_service & io_service);

This constructor creates a handle without opening it.

Parameters

io_service The io_service object that the handle will use to dispatch handlers for any asynchronous operations performed on
the handle.

windows::basic_handle::basic_handle (2 of 2 overloads)

Construct a basic_handle on an existing native handle.

805

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_handle(
 boost::asio::io_service & io_service,

const native_type & native_handle);

This constructor creates a handle object to hold an existing native handle.

Parameters

io_service The io_service object that the handle will use to dispatch handlers for any asynchronous operations performed
on the handle.

native_handle A native handle.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_handle::cancel

Cancel all asynchronous operations associated with the handle.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

windows::basic_handle::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_handle::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_handle::close

Close the handle.

806

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

windows::basic_handle::close (1 of 2 overloads)

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_handle::close (2 of 2 overloads)

Close the handle.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_handle::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

807

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

implementation_type implementation;

windows::basic_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

windows::basic_handle::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_handle::is_open

Determine whether the handle is open.

bool is_open() const;

windows::basic_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

windows::basic_handle::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_handle cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

808

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_handle::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_handle cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_handle::lowest_layer_type

A basic_handle is always the lowest layer.

typedef basic_handle< HandleService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

809

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::basic_handle::native

Get the native handle representation.

810

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_handle::native_type

The native representation of a handle.

typedef HandleService::native_type native_type;

windows::basic_handle::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

windows::basic_handle::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef HandleService service_type;

windows::basic_handle::~basic_handle

Protected destructor to prevent deletion through this type.

~basic_handle();

windows::basic_random_access_handle
Provides random-access handle functionality.

811

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename RandomAccessHandleService = random_access_handle_service>

class basic_random_access_handle :
public windows::basic_handle< RandomAccessHandleService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read at the specified offset.async_read_some_at

Start an asynchronous write at the specified offset.async_write_some_at

Construct a basic_random_access_handle without opening it.

Construct a basic_random_access_handle on an existing native
handle.

basic_random_access_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Read some data from the handle at the specified offset.read_some_at

Write some data to the handle at the specified offset.write_some_at

812

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_random_access_handle class template provides asynchronous and blocking random-access handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::basic_random_access_handle::assign

Assign an existing native handle to the handle.

void assign(
const native_type & native_handle);

boost::system::error_code assign(
const native_type & native_handle,

 boost::system::error_code & ec);

windows::basic_random_access_handle::assign (1 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

void assign(
const native_type & native_handle);

windows::basic_random_access_handle::assign (2 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_type & native_handle,

 boost::system::error_code & ec);

windows::basic_random_access_handle::async_read_some_at

Start an asynchronous read at the specified offset.

813

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some_at(
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 ReadHandler handler);

This function is used to asynchronously read data from the random-access handle. The function call always returns immediately.

Parameters

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes read.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read_at function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.async_read_some_at(42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_random_access_handle::async_write_some_at

Start an asynchronous write at the specified offset.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some_at(
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 WriteHandler handler);

This function is used to asynchronously write data to the random-access handle. The function call always returns immediately.

814

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

offset The offset at which the data will be written.

buffers One or more data buffers to be written to the handle. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write_at function if you need to ensure
that all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

handle.async_write_some_at(42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_random_access_handle::basic_random_access_handle

Construct a basic_random_access_handle without opening it.

basic_random_access_handle(
 boost::asio::io_service & io_service);

Construct a basic_random_access_handle on an existing native handle.

basic_random_access_handle(
 boost::asio::io_service & io_service,

const native_type & native_handle);

windows::basic_random_access_handle::basic_random_access_handle (1 of 2 overloads)

Construct a basic_random_access_handle without opening it.

basic_random_access_handle(
 boost::asio::io_service & io_service);

This constructor creates a random-access handle without opening it. The handle needs to be opened before data can be written to or
or read from it.

815

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

io_service The io_service object that the random-access handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

windows::basic_random_access_handle::basic_random_access_handle (2 of 2 overloads)

Construct a basic_random_access_handle on an existing native handle.

basic_random_access_handle(
 boost::asio::io_service & io_service,

const native_type & native_handle);

This constructor creates a random-access handle object to hold an existing native handle.

Parameters

io_service The io_service object that the random-access handle will use to dispatch handlers for any asynchronous oper-
ations performed on the handle.

native_handle The new underlying handle implementation.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_random_access_handle::cancel

Cancel all asynchronous operations associated with the handle.

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

windows::basic_random_access_handle::cancel (1 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_random_access_handle::cancel (2 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

816

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_random_access_handle::close

Close the handle.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

windows::basic_random_access_handle::close (1 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_random_access_handle::close (2 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_random_access_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

817

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

windows::basic_random_access_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

windows::basic_random_access_handle::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::is_open

Inherited from windows::basic_handle.

Determine whether the handle is open.

bool is_open() const;

windows::basic_random_access_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

818

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const lowest_layer_type & lowest_layer() const;

windows::basic_random_access_handle::lowest_layer (1 of 2 overloads)

Inherited from windows::basic_handle.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_handle cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::lowest_layer (2 of 2 overloads)

Inherited from windows::basic_handle.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_handle cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::lowest_layer_type

Inherited from windows::basic_handle.

A basic_handle is always the lowest layer.

typedef basic_handle< RandomAccessHandleService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

819

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::basic_random_access_handle::native

Inherited from windows::basic_handle.

Get the native handle representation.

820

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_random_access_handle::native_type

The native representation of a handle.

typedef RandomAccessHandleService::native_type native_type;

windows::basic_random_access_handle::read_some_at

Read some data from the handle at the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
 boost::uint64_t offset,

const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t read_some_at(
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

windows::basic_random_access_handle::read_some_at (1 of 2 overloads)

Read some data from the handle at the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
 boost::uint64_t offset,

const MutableBufferSequence & buffers);

This function is used to read data from the random-access handle. The function call will block until one or more bytes of data has
been read successfully, or until an error occurs.

Parameters

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

821

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read_at function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.read_some_at(42, boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_random_access_handle::read_some_at (2 of 2 overloads)

Read some data from the handle at the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

This function is used to read data from the random-access handle. The function call will block until one or more bytes of data has
been read successfully, or until an error occurs.

Parameters

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read_at function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

windows::basic_random_access_handle::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

windows::basic_random_access_handle::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

822

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef RandomAccessHandleService service_type;

windows::basic_random_access_handle::write_some_at

Write some data to the handle at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
 boost::uint64_t offset,

const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t write_some_at(
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

windows::basic_random_access_handle::write_some_at (1 of 2 overloads)

Write some data to the handle at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
 boost::uint64_t offset,

const ConstBufferSequence & buffers);

This function is used to write data to the random-access handle. The function call will block until one or more bytes of the data has
been written successfully, or until an error occurs.

Parameters

offset The offset at which the data will be written.

buffers One or more data buffers to be written to the handle.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The write_some_at operation may not write all of the data. Consider using the write_at function if you need to ensure that all data
is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

823

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

handle.write_some_at(42, boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_random_access_handle::write_some_at (2 of 2 overloads)

Write some data to the handle at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

This function is used to write data to the random-access handle. The function call will block until one or more bytes of the data has
been written successfully, or until an error occurs.

Parameters

offset The offset at which the data will be written.

buffers One or more data buffers to be written to the handle.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write_at function if you need to ensure
that all data is written before the blocking operation completes.

windows::basic_stream_handle
Provides stream-oriented handle functionality.

template<
typename StreamHandleService = stream_handle_service>

class basic_stream_handle :
public windows::basic_handle< StreamHandleService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

824

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_handle without opening it.

Construct a basic_stream_handle on an existing native handle.

basic_stream_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Read some data from the handle.read_some

Write some data to the handle.write_some

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_stream_handle class template provides asynchronous and blocking stream-oriented handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::basic_stream_handle::assign

Assign an existing native handle to the handle.

825

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void assign(
const native_type & native_handle);

boost::system::error_code assign(
const native_type & native_handle,

 boost::system::error_code & ec);

windows::basic_stream_handle::assign (1 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

void assign(
const native_type & native_handle);

windows::basic_stream_handle::assign (2 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_type & native_handle,

 boost::system::error_code & ec);

windows::basic_stream_handle::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
const MutableBufferSequence & buffers,

 ReadHandler handler);

This function is used to asynchronously read data from the stream handle. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes read.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

826

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_stream_handle::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
const ConstBufferSequence & buffers,

 WriteHandler handler);

This function is used to asynchronously write data to the stream handle. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the handle. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

 std::size_t bytes_transferred // Number of bytes written.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using boost::asio::io_ser-
vice::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

handle.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

827

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle::basic_stream_handle

Construct a basic_stream_handle without opening it.

basic_stream_handle(
 boost::asio::io_service & io_service);

Construct a basic_stream_handle on an existing native handle.

basic_stream_handle(
 boost::asio::io_service & io_service,

const native_type & native_handle);

windows::basic_stream_handle::basic_stream_handle (1 of 2 overloads)

Construct a basic_stream_handle without opening it.

basic_stream_handle(
 boost::asio::io_service & io_service);

This constructor creates a stream handle without opening it. The handle needs to be opened and then connected or accepted before
data can be sent or received on it.

Parameters

io_service The io_service object that the stream handle will use to dispatch handlers for any asynchronous operations performed
on the handle.

windows::basic_stream_handle::basic_stream_handle (2 of 2 overloads)

Construct a basic_stream_handle on an existing native handle.

basic_stream_handle(
 boost::asio::io_service & io_service,

const native_type & native_handle);

This constructor creates a stream handle object to hold an existing native handle.

Parameters

io_service The io_service object that the stream handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

native_handle The new underlying handle implementation.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_stream_handle::cancel

Cancel all asynchronous operations associated with the handle.

828

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void cancel();

boost::system::error_code cancel(
 boost::system::error_code & ec);

windows::basic_stream_handle::cancel (1 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_stream_handle::cancel (2 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
 boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_stream_handle::close

Close the handle.

void close();

boost::system::error_code close(
 boost::system::error_code & ec);

windows::basic_stream_handle::close (1 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

829

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_stream_handle::close (2 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

boost::system::error_code close(
 boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_stream_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_stream_handle::implementation

Inherited from basic_io_object.

The underlying implementation of the I/O object.

implementation_type implementation;

windows::basic_stream_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

windows::basic_stream_handle::io_service

Inherited from basic_io_object.

(Deprecated: use get_io_service().) Get the io_service associated with the object.

830

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_stream_handle::is_open

Inherited from windows::basic_handle.

Determine whether the handle is open.

bool is_open() const;

windows::basic_stream_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

windows::basic_stream_handle::lowest_layer (1 of 2 overloads)

Inherited from windows::basic_handle.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_handle cannot contain any further layers, it
simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_stream_handle::lowest_layer (2 of 2 overloads)

Inherited from windows::basic_handle.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_handle cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

831

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle::lowest_layer_type

Inherited from windows::basic_handle.

A basic_handle is always the lowest layer.

typedef basic_handle< StreamHandleService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~basic_handle

832

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::basic_stream_handle::native

Inherited from windows::basic_handle.

Get the native handle representation.

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_stream_handle::native_type

The native representation of a handle.

typedef StreamHandleService::native_type native_type;

windows::basic_stream_handle::read_some

Read some data from the handle.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

windows::basic_stream_handle::read_some (1 of 2 overloads)

Read some data from the handle.

833

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream handle. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_stream_handle::read_some (2 of 2 overloads)

Read some data from the handle.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to read data from the stream handle. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

834

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

windows::basic_stream_handle::service

Inherited from basic_io_object.

The service associated with the I/O object.

service_type & service;

windows::basic_stream_handle::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamHandleService service_type;

windows::basic_stream_handle::write_some

Write some data to the handle.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

windows::basic_stream_handle::write_some (1 of 2 overloads)

Write some data to the handle.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the stream handle. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the handle.

Return Value

The number of bytes written.

835

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection was
closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

handle.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_stream_handle::write_some (2 of 2 overloads)

Write some data to the handle.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,

 boost::system::error_code & ec);

This function is used to write data to the stream handle. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the handle.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

windows::overlapped_ptr
Wraps a handler to create an OVERLAPPED object for use with overlapped I/O.

836

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class overlapped_ptr :
 noncopyable

Member Functions

DescriptionName

Post completion notification for overlapped operation. Releases
ownership.

complete

Get the contained OVERLAPPED object.get

Construct an empty overlapped_ptr.

Construct an overlapped_ptr to contain the specified handler.

overlapped_ptr

Release ownership of the OVERLAPPED object.release

Reset to empty.

Reset to contain the specified handler, freeing any current
OVERLAPPED object.

reset

Destructor automatically frees the OVERLAPPED object unless
released.

~overlapped_ptr

A special-purpose smart pointer used to wrap an application handler so that it can be passed as the LPOVERLAPPED argument to
overlapped I/O functions.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::overlapped_ptr::complete

Post completion notification for overlapped operation. Releases ownership.

void complete(
const boost::system::error_code & ec,

 std::size_t bytes_transferred);

windows::overlapped_ptr::get

Get the contained OVERLAPPED object.

OVERLAPPED * get();

const OVERLAPPED * get() const;

windows::overlapped_ptr::get (1 of 2 overloads)

Get the contained OVERLAPPED object.

837

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

OVERLAPPED * get();

windows::overlapped_ptr::get (2 of 2 overloads)

Get the contained OVERLAPPED object.

const OVERLAPPED * get() const;

windows::overlapped_ptr::overlapped_ptr

Construct an empty overlapped_ptr.

overlapped_ptr();

Construct an overlapped_ptr to contain the specified handler.

template<
typename Handler>

overlapped_ptr(
 boost::asio::io_service & io_service,
 Handler handler);

windows::overlapped_ptr::overlapped_ptr (1 of 2 overloads)

Construct an empty overlapped_ptr.

overlapped_ptr();

windows::overlapped_ptr::overlapped_ptr (2 of 2 overloads)

Construct an overlapped_ptr to contain the specified handler.

template<
typename Handler>

overlapped_ptr(
 boost::asio::io_service & io_service,
 Handler handler);

windows::overlapped_ptr::release

Release ownership of the OVERLAPPED object.

OVERLAPPED * release();

windows::overlapped_ptr::reset

Reset to empty.

void reset();

Reset to contain the specified handler, freeing any current OVERLAPPED object.

838

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Handler>

void reset(
 boost::asio::io_service & io_service,
 Handler handler);

windows::overlapped_ptr::reset (1 of 2 overloads)

Reset to empty.

void reset();

windows::overlapped_ptr::reset (2 of 2 overloads)

Reset to contain the specified handler, freeing any current OVERLAPPED object.

template<
typename Handler>

void reset(
 boost::asio::io_service & io_service,
 Handler handler);

windows::overlapped_ptr::~overlapped_ptr

Destructor automatically frees the OVERLAPPED object unless released.

~overlapped_ptr();

windows::random_access_handle
Typedef for the typical usage of a random-access handle.

typedef basic_random_access_handle random_access_handle;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

839

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read at the specified offset.async_read_some_at

Start an asynchronous write at the specified offset.async_write_some_at

Construct a basic_random_access_handle without opening it.

Construct a basic_random_access_handle on an existing native
handle.

basic_random_access_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Read some data from the handle at the specified offset.read_some_at

Write some data to the handle at the specified offset.write_some_at

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_random_access_handle class template provides asynchronous and blocking random-access handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::random_access_handle_service
Default service implementation for a random-access handle.

840

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class random_access_handle_service :
public io_service::service

Types

DescriptionName

The type of a random-access handle implementation.implementation_type

The native handle type.native_type

Member Functions

DescriptionName

Assign an existing native handle to a random-access handle.assign

Start an asynchronous read at the specified offset.async_read_some_at

Start an asynchronous write at the specified offset.async_write_some_at

Cancel all asynchronous operations associated with the handle.cancel

Close a random-access handle implementation.close

Construct a new random-access handle implementation.construct

Destroy a random-access handle implementation.destroy

Get the io_service object that owns the service.get_io_service

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the handle is open.is_open

Get the native handle implementation.native

Construct a new random-access handle service for the specified
io_service.

random_access_handle_service

Read some data from the specified offset.read_some_at

Destroy all user-defined handler objects owned by the service.shutdown_service

Write the given data at the specified offset.write_some_at

Data Members

DescriptionName

The unique service identifier.id

841

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::random_access_handle_service::assign

Assign an existing native handle to a random-access handle.

boost::system::error_code assign(
 implementation_type & impl,

const native_type & native_handle,
 boost::system::error_code & ec);

windows::random_access_handle_service::async_read_some_at

Start an asynchronous read at the specified offset.

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some_at(
 implementation_type & impl,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 ReadHandler handler);

windows::random_access_handle_service::async_write_some_at

Start an asynchronous write at the specified offset.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some_at(
 implementation_type & impl,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 WriteHandler handler);

windows::random_access_handle_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

windows::random_access_handle_service::close

Close a random-access handle implementation.

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

windows::random_access_handle_service::construct

Construct a new random-access handle implementation.

842

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void construct(
 implementation_type & impl);

windows::random_access_handle_service::destroy

Destroy a random-access handle implementation.

void destroy(
 implementation_type & impl);

windows::random_access_handle_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

windows::random_access_handle_service::id

The unique service identifier.

static boost::asio::io_service::id id;

windows::random_access_handle_service::implementation_type

The type of a random-access handle implementation.

typedef implementation_defined implementation_type;

windows::random_access_handle_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

windows::random_access_handle_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

windows::random_access_handle_service::native

Get the native handle implementation.

843

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

native_type native(
 implementation_type & impl);

windows::random_access_handle_service::native_type

The native handle type.

typedef implementation_defined native_type;

windows::random_access_handle_service::random_access_handle_service

Construct a new random-access handle service for the specified io_service.

random_access_handle_service(
 boost::asio::io_service & io_service);

windows::random_access_handle_service::read_some_at

Read some data from the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
 implementation_type & impl,
 boost::uint64_t offset,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

windows::random_access_handle_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

windows::random_access_handle_service::write_some_at

Write the given data at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
 implementation_type & impl,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

windows::stream_handle
Typedef for the typical usage of a stream-oriented handle.

844

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_stream_handle stream_handle;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_handle without opening it.

Construct a basic_stream_handle on an existing native handle.

basic_stream_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

(Deprecated: use get_io_service().) Get the io_service associated
with the object.

io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get the native handle representation.native

Read some data from the handle.read_some

Write some data to the handle.write_some

845

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

The underlying implementation of the I/O object.implementation

The service associated with the I/O object.service

The windows::basic_stream_handle class template provides asynchronous and blocking stream-oriented handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

windows::stream_handle_service
Default service implementation for a stream handle.

class stream_handle_service :
public io_service::service

Types

DescriptionName

The type of a stream handle implementation.implementation_type

The native handle type.native_type

846

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to a stream handle.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Cancel all asynchronous operations associated with the handle.cancel

Close a stream handle implementation.close

Construct a new stream handle implementation.construct

Destroy a stream handle implementation.destroy

Get the io_service object that owns the service.get_io_service

(Deprecated: use get_io_service().) Get the io_service object
that owns the service.

io_service

Determine whether the handle is open.is_open

Get the native handle implementation.native

Read some data from the stream.read_some

Destroy all user-defined handler objects owned by the service.shutdown_service

Construct a new stream handle service for the specified io_ser-
vice.

stream_handle_service

Write the given data to the stream.write_some

Data Members

DescriptionName

The unique service identifier.id

windows::stream_handle_service::assign

Assign an existing native handle to a stream handle.

boost::system::error_code assign(
 implementation_type & impl,

const native_type & native_handle,
 boost::system::error_code & ec);

windows::stream_handle_service::async_read_some

Start an asynchronous read.

847

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void async_read_some(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 ReadHandler handler);

windows::stream_handle_service::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void async_write_some(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 WriteHandler handler);

windows::stream_handle_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
 implementation_type & impl,
 boost::system::error_code & ec);

windows::stream_handle_service::close

Close a stream handle implementation.

boost::system::error_code close(
 implementation_type & impl,
 boost::system::error_code & ec);

windows::stream_handle_service::construct

Construct a new stream handle implementation.

void construct(
 implementation_type & impl);

windows::stream_handle_service::destroy

Destroy a stream handle implementation.

void destroy(
 implementation_type & impl);

windows::stream_handle_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

848

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

windows::stream_handle_service::id

The unique service identifier.

static boost::asio::io_service::id id;

windows::stream_handle_service::implementation_type

The type of a stream handle implementation.

typedef implementation_defined implementation_type;

windows::stream_handle_service::io_service

Inherited from io_service.

(Deprecated: use get_io_service().) Get the io_service object that owns the service.

boost::asio::io_service & io_service();

windows::stream_handle_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

windows::stream_handle_service::native

Get the native handle implementation.

native_type native(
 implementation_type & impl);

windows::stream_handle_service::native_type

The native handle type.

typedef implementation_defined native_type;

windows::stream_handle_service::read_some

Read some data from the stream.

849

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
 implementation_type & impl,

const MutableBufferSequence & buffers,
 boost::system::error_code & ec);

windows::stream_handle_service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

windows::stream_handle_service::stream_handle_service

Construct a new stream handle service for the specified io_service.

stream_handle_service(
 boost::asio::io_service & io_service);

windows::stream_handle_service::write_some

Write the given data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
 implementation_type & impl,

const ConstBufferSequence & buffers,
 boost::system::error_code & ec);

write
Write a certain amount of data to a stream before returning.

850

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncWriteStream,
typename ConstBufferSequence>

std::size_t write(
 SyncWriteStream & s,

const ConstBufferSequence & buffers);

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition);

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

template<
typename SyncWriteStream,
typename Allocator>

std::size_t write(
 SyncWriteStream & s,
 basic_streambuf< Allocator > & b);

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

write (1 of 6 overloads)

Write all of the supplied data to a stream before returning.

851

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncWriteStream,
typename ConstBufferSequence>

std::size_t write(
 SyncWriteStream & s,

const ConstBufferSequence & buffers);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the maximum number of
bytes to write to the stream.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write(s, boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::write(
 s, buffers,
 boost::asio::transfer_all());

write (2 of 6 overloads)

Write a certain amount of data to a stream before returning.

852

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the stream.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write(s, boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

853

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

write (3 of 6 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the stream.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

write (4 of 6 overloads)

Write all of the supplied data to a stream before returning.

854

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncWriteStream,
typename Allocator>

std::size_t write(
 SyncWriteStream & s,
 basic_streambuf< Allocator > & b);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

This overload is equivalent to calling:

boost::asio::write(
 s, b,
 boost::asio::transfer_all());

write (5 of 6 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

855

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

write (6 of 6 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
 SyncWriteStream & s,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

856

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

write_at
Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers);

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition);

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

template<
typename SyncRandomAccessWriteDevice,
typename Allocator>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b);

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,

857

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename CompletionCondition>
std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

write_at (1 of 6 overloads)

Write all of the supplied data at the specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the maximum number of
bytes to write to the device.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

858

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::write_at(d, 42, boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::write_at(
 d, offset, buffers,
 boost::asio::transfer_all());

write_at (2 of 6 overloads)

Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the device.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

859

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write_at(d, 42, boost::asio::buffer(data, size),
 boost::asio::transfer_at_least(32));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

write_at (3 of 6 overloads)

Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,

const ConstBufferSequence & buffers,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

860

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the device.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

write_at (4 of 6 overloads)

Write all of the supplied data at the specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename Allocator>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

861

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

This overload is equivalent to calling:

boost::asio::write_at(
 d, 42, b,
 boost::asio::transfer_all());

write_at (5 of 6 overloads)

Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

Return Value

The number of bytes transferred.

862

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

write_at (6 of 6 overloads)

Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition>

std::size_t write_at(
 SyncRandomAccessWriteDevice & d,
 boost::uint64_t offset,
 basic_streambuf< Allocator > & b,
 CompletionCondition completion_condition,
 boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns true.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
 std::size_t bytes_transferred
);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

863

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::is_error_code_enum< boost::asio::error::ad-
drinfo_errors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >

Data Members

DescriptionName

value

boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors
>::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::basic_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::basic_errors >

Data Members

DescriptionName

value

boost::system::is_error_code_enum< boost::asio::error::basic_errors >::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::misc_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::misc_errors >

Data Members

DescriptionName

value

864

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::is_error_code_enum< boost::asio::error::misc_errors >::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::netdb_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::netdb_errors >

Data Members

DescriptionName

value

boost::system::is_error_code_enum< boost::asio::error::netdb_errors >::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::ssl_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::ssl_errors >

Data Members

DescriptionName

value

boost::system::is_error_code_enum< boost::asio::error::ssl_errors >::value

static const bool value = true;

Index

Symbols
~basic_context

ssl::basic_context, 761
~basic_descriptor

posix::basic_descriptor, 665
~basic_handle

windows::basic_handle, 811
~basic_io_object

basic_io_object, 234
~basic_socket

865

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket, 336
~basic_socket_streambuf

basic_socket_streambuf, 401
~context_base

ssl::context_base, 766
~descriptor_base

posix::descriptor_base, 681
~io_service

io_service, 528
~overlapped_ptr

windows::overlapped_ptr, 839
~resolver_query_base

ip::resolver_query_base, 592
~serial_port_base

serial_port_base, 721
~service

io_service::service, 530
~socket_base

socket_base, 747
~strand

io_service::strand, 533
~stream

ssl::stream, 783
~stream_base

ssl::stream_base, 784
~work

io_service::work, 534

A
accept

basic_socket_acceptor, 340
socket_acceptor_service, 734

acceptor
ip::tcp, 598
local::stream_protocol, 638

add
time_traits< boost::posix_time::ptime >, 801

address
ip::address, 536
ip::basic_endpoint, 559

address_configured
ip::basic_resolver_query, 575
ip::resolver_query_base, 591

address_v4
ip::address_v4, 542

address_v6
ip::address_v6, 550

add_service, 139
io_service, 521

add_verify_path
ssl::basic_context, 749
ssl::context_service, 768

all_matching
ip::basic_resolver_query, 575
ip::resolver_query_base, 592

any
ip::address_v4, 543

866

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v6, 551
asio_handler_allocate, 139
asio_handler_deallocate, 140
asio_handler_invoke, 140
assign

basic_datagram_socket, 174
basic_raw_socket, 238
basic_serial_port, 288
basic_socket, 305
basic_socket_acceptor, 343
basic_socket_streambuf, 370
basic_stream_socket, 405
datagram_socket_service, 500
posix::basic_descriptor, 656
posix::basic_stream_descriptor, 667
posix::stream_descriptor_service, 684
raw_socket_service, 690
serial_port_service, 728
socket_acceptor_service, 735
stream_socket_service, 793
windows::basic_handle, 804
windows::basic_random_access_handle, 813
windows::basic_stream_handle, 825
windows::random_access_handle_service, 842
windows::stream_handle_service, 847

async_accept
basic_socket_acceptor, 343
socket_acceptor_service, 735

async_connect
basic_datagram_socket, 175
basic_raw_socket, 239
basic_socket, 306
basic_socket_streambuf, 371
basic_stream_socket, 406
datagram_socket_service, 500
raw_socket_service, 690
stream_socket_service, 793

async_fill
buffered_read_stream, 468
buffered_stream, 477

async_flush
buffered_stream, 477
buffered_write_stream, 485

async_handshake
ssl::stream, 773
ssl::stream_service, 785

async_read, 141
async_read_at, 146
async_read_some

basic_serial_port, 288
basic_stream_socket, 407
buffered_read_stream, 468
buffered_stream, 477
buffered_write_stream, 485
posix::basic_stream_descriptor, 667
posix::stream_descriptor_service, 684
serial_port_service, 729
ssl::stream, 773

867

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream_service, 786
windows::basic_stream_handle, 826
windows::stream_handle_service, 847

async_read_some_at
windows::basic_random_access_handle, 813
windows::random_access_handle_service, 842

async_read_until, 152
async_receive

basic_datagram_socket, 176
basic_raw_socket, 240
basic_stream_socket, 408
datagram_socket_service, 500
raw_socket_service, 690
stream_socket_service, 793

async_receive_from
basic_datagram_socket, 178
basic_raw_socket, 242
datagram_socket_service, 500
raw_socket_service, 690

async_resolve
ip::basic_resolver, 564
ip::resolver_service, 593

async_send
basic_datagram_socket, 180
basic_raw_socket, 244
basic_stream_socket, 410
datagram_socket_service, 501
raw_socket_service, 691
stream_socket_service, 793

async_send_to
basic_datagram_socket, 182
basic_raw_socket, 246
datagram_socket_service, 501
raw_socket_service, 691

async_shutdown
ssl::stream, 774
ssl::stream_service, 786

async_wait
basic_deadline_timer, 225
deadline_timer_service, 510

async_write, 159
async_write_at, 164
async_write_some

basic_serial_port, 289
basic_stream_socket, 412
buffered_read_stream, 468
buffered_stream, 477
buffered_write_stream, 485
posix::basic_stream_descriptor, 668
posix::stream_descriptor_service, 684
serial_port_service, 729
ssl::stream, 774
ssl::stream_service, 786
windows::basic_stream_handle, 827
windows::stream_handle_service, 848

async_write_some_at
windows::basic_random_access_handle, 814
windows::random_access_handle_service, 842

868

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

at_mark
basic_datagram_socket, 183
basic_raw_socket, 247
basic_socket, 307
basic_socket_streambuf, 372
basic_stream_socket, 413
datagram_socket_service, 501
raw_socket_service, 691
stream_socket_service, 793

available
basic_datagram_socket, 184
basic_raw_socket, 248
basic_socket, 308
basic_socket_streambuf, 373
basic_stream_socket, 413
datagram_socket_service, 501
raw_socket_service, 691
stream_socket_service, 794

B
basic_context

ssl::basic_context, 749
basic_datagram_socket

basic_datagram_socket, 185
basic_deadline_timer

basic_deadline_timer, 225
basic_descriptor

posix::basic_descriptor, 657
basic_endpoint

ip::basic_endpoint, 559
local::basic_endpoint, 626

basic_handle
windows::basic_handle, 805

basic_io_object
basic_io_object, 232

basic_random_access_handle
windows::basic_random_access_handle, 815

basic_raw_socket
basic_raw_socket, 249

basic_resolver
ip::basic_resolver, 566

basic_resolver_entry
ip::basic_resolver_entry, 571

basic_resolver_iterator
ip::basic_resolver_iterator, 573

basic_resolver_query
ip::basic_resolver_query, 575

basic_serial_port
basic_serial_port, 290

basic_socket
basic_socket, 308

basic_socket_acceptor
basic_socket_acceptor, 345

basic_socket_iostream
basic_socket_iostream, 366

basic_socket_streambuf
basic_socket_streambuf, 373

869

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_streambuf
basic_streambuf, 452

basic_stream_descriptor
posix::basic_stream_descriptor, 669

basic_stream_handle
windows::basic_stream_handle, 828

basic_stream_socket
basic_stream_socket, 414

baud_rate
serial_port_base::baud_rate, 722

begin
buffers_iterator, 491
const_buffers_1, 495
mutable_buffers_1, 650
null_buffers, 653

bind
basic_datagram_socket, 187
basic_raw_socket, 251
basic_socket, 310
basic_socket_acceptor, 348
basic_socket_streambuf, 374
basic_stream_socket, 416
datagram_socket_service, 502
raw_socket_service, 692
socket_acceptor_service, 735
stream_socket_service, 794

broadcast
basic_datagram_socket, 188
basic_raw_socket, 252
basic_socket, 311
basic_socket_acceptor, 349
basic_socket_streambuf, 375
basic_stream_socket, 417
ip::address_v4, 543
socket_base, 740

buffer, 455
buffered_read_stream

buffered_read_stream, 468
buffered_stream

buffered_stream, 478
buffered_write_stream

buffered_write_stream, 485
buffers_begin, 491
buffers_end, 491
buffers_iterator

buffers_iterator, 492
buffer_cast

const_buffer, 492
const_buffers_1, 495
mutable_buffer, 648
mutable_buffers_1, 650

buffer_size
const_buffer, 493
const_buffers_1, 495
mutable_buffer, 648
mutable_buffers_1, 651

bytes_readable
basic_datagram_socket, 189

870

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket, 253
basic_socket, 312
basic_socket_acceptor, 349
basic_socket_streambuf, 375
basic_stream_socket, 418
posix::basic_descriptor, 658
posix::basic_stream_descriptor, 670
posix::descriptor_base, 680
socket_base, 740

bytes_type
ip::address_v4, 544
ip::address_v6, 551

C
cancel

basic_datagram_socket, 189
basic_deadline_timer, 226
basic_raw_socket, 253
basic_serial_port, 291
basic_socket, 312
basic_socket_acceptor, 350
basic_socket_streambuf, 376
basic_stream_socket, 418
datagram_socket_service, 502
deadline_timer_service, 510
ip::basic_resolver, 566
ip::resolver_service, 594
posix::basic_descriptor, 658
posix::basic_stream_descriptor, 670
posix::stream_descriptor_service, 684
raw_socket_service, 692
serial_port_service, 729
socket_acceptor_service, 735
stream_socket_service, 794
windows::basic_handle, 806
windows::basic_random_access_handle, 816
windows::basic_stream_handle, 828
windows::random_access_handle_service, 842
windows::stream_handle_service, 848

canonical_name
ip::basic_resolver_query, 577
ip::resolver_query_base, 592

capacity
ip::basic_endpoint, 560
local::basic_endpoint, 627

character_size
serial_port_base::character_size, 723

close
basic_datagram_socket, 190
basic_raw_socket, 254
basic_serial_port, 292
basic_socket, 313
basic_socket_acceptor, 350
basic_socket_iostream, 367
basic_socket_streambuf, 377
basic_stream_socket, 420
buffered_read_stream, 469

871

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffered_stream, 478
buffered_write_stream, 486
datagram_socket_service, 502
posix::basic_descriptor, 659
posix::basic_stream_descriptor, 671
posix::stream_descriptor_service, 684
raw_socket_service, 692
serial_port_service, 729
socket_acceptor_service, 735
stream_socket_service, 794
windows::basic_handle, 806
windows::basic_random_access_handle, 817
windows::basic_stream_handle, 829
windows::random_access_handle_service, 842
windows::stream_handle_service, 848

commit
basic_streambuf, 452

complete
windows::overlapped_ptr, 837

connect
basic_datagram_socket, 191
basic_raw_socket, 255
basic_socket, 314
basic_socket_iostream, 367
basic_socket_streambuf, 378
basic_stream_socket, 421
datagram_socket_service, 502
raw_socket_service, 692
stream_socket_service, 794

construct
datagram_socket_service, 502
deadline_timer_service, 511
ip::resolver_service, 594
posix::stream_descriptor_service, 685
raw_socket_service, 692
serial_port_service, 729
socket_acceptor_service, 736
stream_socket_service, 794
windows::random_access_handle_service, 842
windows::stream_handle_service, 848

const_buffer
const_buffer, 493

const_buffers_1
const_buffers_1, 495

const_buffers_type
basic_streambuf, 452

const_iterator
const_buffers_1, 496
mutable_buffers_1, 651
null_buffers, 653

consume
basic_streambuf, 453

context_service
ssl::context_service, 768

create
ip::basic_resolver_iterator, 573
ssl::context_service, 768
ssl::stream_service, 786

872

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

D
data

basic_streambuf, 453
ip::basic_endpoint, 560
local::basic_endpoint, 627

datagram_socket_service
datagram_socket_service, 502

data_type
ip::basic_endpoint, 561
local::basic_endpoint, 628

deadline_timer, 506
deadline_timer_service

deadline_timer_service, 511
debug

basic_datagram_socket, 193
basic_raw_socket, 257
basic_socket, 316
basic_socket_acceptor, 351
basic_socket_streambuf, 380
basic_stream_socket, 422
socket_base, 741

default_buffer_size
buffered_read_stream, 469
buffered_write_stream, 486

default_workarounds
ssl::basic_context, 750
ssl::context_base, 764

destroy
datagram_socket_service, 502
deadline_timer_service, 511
ip::resolver_service, 594
posix::stream_descriptor_service, 685
raw_socket_service, 692
serial_port_service, 729
socket_acceptor_service, 736
ssl::context_service, 768
ssl::stream_service, 787
stream_socket_service, 795
windows::random_access_handle_service, 843
windows::stream_handle_service, 848

dispatch
io_service, 522
io_service::strand, 531

do_not_route
basic_datagram_socket, 193
basic_raw_socket, 257
basic_socket, 316
basic_socket_acceptor, 352
basic_socket_streambuf, 380
basic_stream_socket, 423
socket_base, 741

duration_type
basic_deadline_timer, 227
deadline_timer_service, 511
time_traits< boost::posix_time::ptime >, 801

873

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

E
enable_connection_aborted

basic_datagram_socket, 194
basic_raw_socket, 258
basic_socket, 317
basic_socket_acceptor, 352
basic_socket_streambuf, 381
basic_stream_socket, 423
socket_base, 742

end
buffers_iterator, 492
const_buffers_1, 496
mutable_buffers_1, 651
null_buffers, 653

endpoint
ip::basic_resolver_entry, 571
ip::icmp, 579
ip::tcp, 601
ip::udp, 613
local::datagram_protocol, 632
local::stream_protocol, 641

endpoint_type
basic_datagram_socket, 194
basic_raw_socket, 258
basic_socket, 317
basic_socket_acceptor, 353
basic_socket_streambuf, 381
basic_stream_socket, 424
datagram_socket_service, 503
ip::basic_resolver, 566
ip::basic_resolver_entry, 572
ip::resolver_service, 595
raw_socket_service, 692
socket_acceptor_service, 736
stream_socket_service, 795

error::addrinfo_category, 514
error::addrinfo_errors, 514
error::basic_errors, 514
error::get_addrinfo_category, 516
error::get_misc_category, 516
error::get_netdb_category, 516
error::get_ssl_category, 516
error::get_system_category, 516
error::make_error_code, 516
error::misc_category, 517
error::misc_errors, 517
error::netdb_category, 517
error::netdb_errors, 517
error::ssl_category, 518
error::ssl_errors, 518
error::system_category, 518
expires_at

basic_deadline_timer, 227
deadline_timer_service, 511

expires_from_now
basic_deadline_timer, 229
deadline_timer_service, 512

874

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

F
family

ip::icmp, 581
ip::tcp, 603
ip::udp, 615
local::datagram_protocol, 633
local::stream_protocol, 642

file_format
ssl::basic_context, 750
ssl::context_base, 764

fill
buffered_read_stream, 470
buffered_stream, 479

flow_control
serial_port_base::flow_control, 724

flush
buffered_stream, 479
buffered_write_stream, 487

from_string
ip::address, 537
ip::address_v4, 544
ip::address_v6, 551

G
get

windows::overlapped_ptr, 837
get_io_service

basic_datagram_socket, 194
basic_deadline_timer, 230
basic_io_object, 233
basic_raw_socket, 258
basic_serial_port, 293
basic_socket, 317
basic_socket_acceptor, 353
basic_socket_streambuf, 381
basic_stream_socket, 424
buffered_read_stream, 470
buffered_stream, 480
buffered_write_stream, 487
datagram_socket_service, 503
deadline_timer_service, 512
io_service::service, 529
io_service::strand, 531
io_service::work, 534
ip::basic_resolver, 566
ip::resolver_service, 595
posix::basic_descriptor, 659
posix::basic_stream_descriptor, 671
posix::stream_descriptor_service, 685
raw_socket_service, 693
serial_port_service, 730
socket_acceptor_service, 736
ssl::context_service, 768
ssl::stream, 775
ssl::stream_service, 787
stream_socket_service, 795
windows::basic_handle, 807

875

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_random_access_handle, 817
windows::basic_stream_handle, 830
windows::random_access_handle_service, 843
windows::stream_handle_service, 848

get_option
basic_datagram_socket, 195
basic_raw_socket, 259
basic_serial_port, 293
basic_socket, 318
basic_socket_acceptor, 353
basic_socket_streambuf, 382
basic_stream_socket, 424
datagram_socket_service, 503
raw_socket_service, 693
serial_port_service, 730
socket_acceptor_service, 736
stream_socket_service, 795

H
handshake

ssl::stream, 775
ssl::stream_service, 787

handshake_type
ssl::stream, 776
ssl::stream_base, 783

has_service, 518
io_service, 522

hints
ip::basic_resolver_query, 577

host_name
ip::basic_resolver_entry, 572
ip::basic_resolver_query, 577

I
id

datagram_socket_service, 503
deadline_timer_service, 512
io_service::id, 529
ip::resolver_service, 595
posix::stream_descriptor_service, 685
raw_socket_service, 693
serial_port_service, 730
socket_acceptor_service, 736
ssl::context_service, 768
ssl::stream_service, 787
stream_socket_service, 795
windows::random_access_handle_service, 843
windows::stream_handle_service, 849

impl
ssl::basic_context, 750
ssl::stream, 776

implementation
basic_datagram_socket, 196
basic_deadline_timer, 230
basic_io_object, 233
basic_raw_socket, 260
basic_serial_port, 294

876

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket, 319
basic_socket_acceptor, 354
basic_socket_streambuf, 383
basic_stream_socket, 425
ip::basic_resolver, 567
posix::basic_descriptor, 660
posix::basic_stream_descriptor, 672
windows::basic_handle, 807
windows::basic_random_access_handle, 818
windows::basic_stream_handle, 830

implementation_type
basic_datagram_socket, 196
basic_deadline_timer, 230
basic_io_object, 233
basic_raw_socket, 260
basic_serial_port, 294
basic_socket, 319
basic_socket_acceptor, 355
basic_socket_streambuf, 383
basic_stream_socket, 426
datagram_socket_service, 503
deadline_timer_service, 513
ip::basic_resolver, 567
ip::resolver_service, 595
posix::basic_descriptor, 660
posix::basic_stream_descriptor, 672
posix::stream_descriptor_service, 685
raw_socket_service, 693
serial_port_service, 730
socket_acceptor_service, 736
stream_socket_service, 795
windows::basic_handle, 808
windows::basic_random_access_handle, 818
windows::basic_stream_handle, 830
windows::random_access_handle_service, 843
windows::stream_handle_service, 849

impl_type
ssl::basic_context, 750
ssl::context_service, 768
ssl::stream, 776
ssl::stream_service, 787

invalid_service_owner
invalid_service_owner, 518

in_avail
buffered_read_stream, 470
buffered_stream, 480
buffered_write_stream, 487
ssl::stream, 776
ssl::stream_service, 787

iostream
ip::tcp, 603
local::stream_protocol, 643

io_control
basic_datagram_socket, 196
basic_raw_socket, 260
basic_socket, 319
basic_socket_streambuf, 383
basic_stream_socket, 426

877

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

datagram_socket_service, 503
posix::basic_descriptor, 660
posix::basic_stream_descriptor, 672
posix::stream_descriptor_service, 685
raw_socket_service, 693
socket_acceptor_service, 737
stream_socket_service, 795

io_service
basic_datagram_socket, 198
basic_deadline_timer, 230
basic_io_object, 233
basic_raw_socket, 262
basic_serial_port, 294
basic_socket, 321
basic_socket_acceptor, 355
basic_socket_streambuf, 385
basic_stream_socket, 427
buffered_read_stream, 471
buffered_stream, 480
buffered_write_stream, 488
datagram_socket_service, 504
deadline_timer_service, 513
io_service, 522
io_service::service, 529
io_service::strand, 531
io_service::work, 534
ip::basic_resolver, 567
ip::resolver_service, 595
posix::basic_descriptor, 661
posix::basic_stream_descriptor, 673
posix::stream_descriptor_service, 686
raw_socket_service, 693
serial_port_service, 730
socket_acceptor_service, 737
ssl::context_service, 769
ssl::stream, 777
ssl::stream_service, 788
stream_socket_service, 796
windows::basic_handle, 808
windows::basic_random_access_handle, 818
windows::basic_stream_handle, 830
windows::random_access_handle_service, 843
windows::stream_handle_service, 849

ip::host_name, 578
ip::multicast::enable_loopback, 589
ip::multicast::hops, 589
ip::multicast::join_group, 590
ip::multicast::leave_group, 590
ip::multicast::outbound_interface, 590
ip::unicast::hops, 623
ip::v6_only, 623
is_class_a

ip::address_v4, 545
is_class_b

ip::address_v4, 545
is_class_c

ip::address_v4, 545
is_link_local

878

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v6, 552
is_loopback

ip::address_v6, 552
is_multicast

ip::address_v4, 545
ip::address_v6, 552

is_multicast_global
ip::address_v6, 552

is_multicast_link_local
ip::address_v6, 553

is_multicast_node_local
ip::address_v6, 553

is_multicast_org_local
ip::address_v6, 553

is_multicast_site_local
ip::address_v6, 553

is_open
basic_datagram_socket, 198
basic_raw_socket, 262
basic_serial_port, 294
basic_socket, 321
basic_socket_acceptor, 355
basic_socket_streambuf, 385
basic_stream_socket, 427
datagram_socket_service, 504
posix::basic_descriptor, 662
posix::basic_stream_descriptor, 674
posix::stream_descriptor_service, 686
raw_socket_service, 694
serial_port_service, 730
socket_acceptor_service, 737
stream_socket_service, 796
windows::basic_handle, 808
windows::basic_random_access_handle, 818
windows::basic_stream_handle, 831
windows::random_access_handle_service, 843
windows::stream_handle_service, 849

is_site_local
ip::address_v6, 553

is_unspecified
ip::address_v6, 553

is_v4
ip::address, 537

is_v4_compatible
ip::address_v6, 553

is_v4_mapped
ip::address_v6, 553

is_v6
ip::address, 538

iterator
ip::basic_resolver, 567

iterator_type
ip::resolver_service, 595

K
keep_alive

basic_datagram_socket, 198

879

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket, 262
basic_socket, 321
basic_socket_acceptor, 355
basic_socket_streambuf, 385
basic_stream_socket, 427
socket_base, 742

L
less_than

time_traits< boost::posix_time::ptime >, 801
linger

basic_datagram_socket, 199
basic_raw_socket, 263
basic_socket, 322
basic_socket_acceptor, 356
basic_socket_streambuf, 386
basic_stream_socket, 428
socket_base, 743

listen
basic_socket_acceptor, 356
socket_acceptor_service, 737

load
serial_port_base::baud_rate, 722
serial_port_base::character_size, 723
serial_port_base::flow_control, 724
serial_port_base::parity, 725
serial_port_base::stop_bits, 727

load_verify_file
ssl::basic_context, 750
ssl::context_service, 769

local::connect_pair, 630
local_endpoint

basic_datagram_socket, 199
basic_raw_socket, 263
basic_socket, 322
basic_socket_acceptor, 357
basic_socket_streambuf, 386
basic_stream_socket, 428
datagram_socket_service, 504
raw_socket_service, 694
socket_acceptor_service, 737
stream_socket_service, 796

loopback
ip::address_v4, 545
ip::address_v6, 554

lowest_layer
basic_datagram_socket, 200
basic_raw_socket, 264
basic_serial_port, 294
basic_socket, 323
basic_socket_streambuf, 387
basic_stream_socket, 430
buffered_read_stream, 471
buffered_stream, 480
buffered_write_stream, 488
posix::basic_descriptor, 662
posix::basic_stream_descriptor, 674

880

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream, 777
windows::basic_handle, 808
windows::basic_random_access_handle, 818
windows::basic_stream_handle, 831

lowest_layer_type
basic_datagram_socket, 201
basic_raw_socket, 265
basic_serial_port, 295
basic_socket, 324
basic_socket_streambuf, 388
basic_stream_socket, 430
buffered_read_stream, 471
buffered_stream, 481
buffered_write_stream, 488
posix::basic_descriptor, 662
posix::basic_stream_descriptor, 674
ssl::stream, 778
windows::basic_handle, 809
windows::basic_random_access_handle, 819
windows::basic_stream_handle, 832

M
max_connections

basic_datagram_socket, 204
basic_raw_socket, 268
basic_socket, 327
basic_socket_acceptor, 358
basic_socket_streambuf, 391
basic_stream_socket, 433
socket_base, 743

max_size
basic_streambuf, 453

message_do_not_route
basic_datagram_socket, 204
basic_raw_socket, 268
basic_socket, 327
basic_socket_acceptor, 358
basic_socket_streambuf, 391
basic_stream_socket, 433
socket_base, 743

message_flags
basic_datagram_socket, 205
basic_raw_socket, 269
basic_socket, 328
basic_socket_acceptor, 358
basic_socket_streambuf, 392
basic_stream_socket, 434
socket_base, 743

message_out_of_band
basic_datagram_socket, 205
basic_raw_socket, 269
basic_socket, 328
basic_socket_acceptor, 358
basic_socket_streambuf, 392
basic_stream_socket, 434
socket_base, 743

message_peek

881

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket, 205
basic_raw_socket, 269
basic_socket, 328
basic_socket_acceptor, 359
basic_socket_streambuf, 392
basic_stream_socket, 434
socket_base, 744

method
ssl::basic_context, 751
ssl::context_base, 764

mutable_buffer
mutable_buffer, 648

mutable_buffers_1
mutable_buffers_1, 651

mutable_buffers_type
basic_streambuf, 453

N
native

basic_datagram_socket, 205
basic_raw_socket, 269
basic_serial_port, 297
basic_socket, 328
basic_socket_acceptor, 359
basic_socket_streambuf, 392
basic_stream_socket, 434
datagram_socket_service, 504
posix::basic_descriptor, 664
posix::basic_stream_descriptor, 676
posix::stream_descriptor_service, 686
raw_socket_service, 694
serial_port_service, 730
socket_acceptor_service, 737
stream_socket_service, 796
windows::basic_handle, 810
windows::basic_random_access_handle, 820
windows::basic_stream_handle, 833
windows::random_access_handle_service, 843
windows::stream_handle_service, 849

native_type
basic_datagram_socket, 205
basic_raw_socket, 269
basic_serial_port, 297
basic_socket, 328
basic_socket_acceptor, 359
basic_socket_streambuf, 392
basic_stream_socket, 434
datagram_socket_service, 504
posix::basic_descriptor, 664
posix::basic_stream_descriptor, 676
posix::stream_descriptor_service, 686
raw_socket_service, 694
serial_port_service, 731
socket_acceptor_service, 738
stream_socket_service, 796
windows::basic_handle, 811
windows::basic_random_access_handle, 821

882

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle, 833
windows::random_access_handle_service, 844
windows::stream_handle_service, 849

netmask
ip::address_v4, 545

next_layer
buffered_read_stream, 471
buffered_stream, 481
buffered_write_stream, 488
ssl::stream, 778

next_layer_type
buffered_read_stream, 471
buffered_stream, 481
buffered_write_stream, 489
ssl::stream, 778

non_blocking_io
basic_datagram_socket, 205
basic_raw_socket, 269
basic_socket, 328
basic_socket_acceptor, 359
basic_socket_streambuf, 392
basic_stream_socket, 434
posix::basic_descriptor, 664
posix::basic_stream_descriptor, 676
posix::descriptor_base, 681
socket_base, 744

now
time_traits< boost::posix_time::ptime >, 801

no_delay
ip::tcp, 603

no_sslv2
ssl::basic_context, 752
ssl::context_base, 765

no_sslv3
ssl::basic_context, 752
ssl::context_base, 765

no_tlsv1
ssl::basic_context, 752
ssl::context_base, 765

null
ssl::context_service, 769
ssl::stream_service, 788

numeric_host
ip::basic_resolver_query, 577
ip::resolver_query_base, 592

numeric_service
ip::basic_resolver_query, 577
ip::resolver_query_base, 592

O
open

basic_datagram_socket, 206
basic_raw_socket, 270
basic_serial_port, 297
basic_socket, 329
basic_socket_acceptor, 359
basic_socket_streambuf, 393

883

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket, 435
datagram_socket_service, 504
raw_socket_service, 694
serial_port_service, 731
socket_acceptor_service, 738
stream_socket_service, 796

operator endpoint_type
ip::basic_resolver_entry, 572

operator!=
ip::address, 538
ip::address_v4, 545
ip::address_v6, 554
ip::basic_endpoint, 561
ip::icmp, 581
ip::tcp, 604
ip::udp, 615
local::basic_endpoint, 628

operator+
const_buffer, 493
const_buffers_1, 496
mutable_buffer, 649
mutable_buffers_1, 652

operator<
ip::address, 538
ip::address_v4, 546
ip::address_v6, 554
ip::basic_endpoint, 561
local::basic_endpoint, 628

operator<<
ip::address, 538
ip::address_v4, 546
ip::address_v6, 554
ip::basic_endpoint, 561
local::basic_endpoint, 628

operator<=
ip::address_v4, 546
ip::address_v6, 554

operator=
ip::address, 538
ip::address_v4, 546
ip::address_v6, 555
ip::basic_endpoint, 562
local::basic_endpoint, 629

operator==
ip::address, 539
ip::address_v4, 546
ip::address_v6, 555
ip::basic_endpoint, 562
ip::icmp, 581
ip::tcp, 604
ip::udp, 615
local::basic_endpoint, 629

operator>
ip::address_v4, 547
ip::address_v6, 555

operator>=
ip::address_v4, 547
ip::address_v6, 555

884

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

options
ssl::basic_context, 752
ssl::context_base, 765

overflow
basic_socket_streambuf, 394
basic_streambuf, 453

overlapped_ptr
windows::overlapped_ptr, 838

P
parity

serial_port_base::parity, 725
passive

ip::basic_resolver_query, 577
ip::resolver_query_base, 592

password_purpose
ssl::basic_context, 752
ssl::context_base, 765

path
local::basic_endpoint, 629

peek
buffered_read_stream, 472
buffered_stream, 481
buffered_write_stream, 489
ssl::stream, 778
ssl::stream_service, 788

placeholders::bytes_transferred, 654
placeholders::error, 654
placeholders::iterator, 654
poll

io_service, 523
poll_one

io_service, 524
port

ip::basic_endpoint, 562
posix::stream_descriptor, 681
post

io_service, 525
io_service::strand, 531

prepare
basic_streambuf, 454

protocol
ip::basic_endpoint, 562
ip::icmp, 581
ip::tcp, 604
ip::udp, 615
local::basic_endpoint, 630
local::datagram_protocol, 633
local::stream_protocol, 643

protocol_type
basic_datagram_socket, 207
basic_raw_socket, 271
basic_socket, 330
basic_socket_acceptor, 361
basic_socket_streambuf, 394
basic_stream_socket, 436
datagram_socket_service, 504

885

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::basic_endpoint, 562
ip::basic_resolver, 567
ip::basic_resolver_entry, 572
ip::basic_resolver_query, 577
ip::resolver_service, 595
local::basic_endpoint, 630
raw_socket_service, 694
socket_acceptor_service, 738
stream_socket_service, 797

Q
query

ip::basic_resolver, 567
query_type

ip::resolver_service, 596

R
random_access_handle_service

windows::random_access_handle_service, 844
raw_socket_service

raw_socket_service, 694
rdbuf

basic_socket_iostream, 367
read, 696
read_at, 703
read_some

basic_serial_port, 298
basic_stream_socket, 436
buffered_read_stream, 472
buffered_stream, 482
buffered_write_stream, 489
posix::basic_stream_descriptor, 676
posix::stream_descriptor_service, 686
serial_port_service, 731
ssl::stream, 779
ssl::stream_service, 788
windows::basic_stream_handle, 833
windows::stream_handle_service, 849

read_some_at
windows::basic_random_access_handle, 821
windows::random_access_handle_service, 844

read_until, 709
receive

basic_datagram_socket, 207
basic_raw_socket, 271
basic_stream_socket, 437
datagram_socket_service, 505
raw_socket_service, 695
stream_socket_service, 797

receive_buffer_size
basic_datagram_socket, 209
basic_raw_socket, 273
basic_socket, 330
basic_socket_acceptor, 361
basic_socket_streambuf, 394
basic_stream_socket, 440
socket_base, 744

886

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

receive_from
basic_datagram_socket, 209
basic_raw_socket, 273
datagram_socket_service, 505
raw_socket_service, 695

receive_low_watermark
basic_datagram_socket, 212
basic_raw_socket, 276
basic_socket, 330
basic_socket_acceptor, 361
basic_socket_streambuf, 395
basic_stream_socket, 440
socket_base, 744

release
windows::overlapped_ptr, 838

remote_endpoint
basic_datagram_socket, 212
basic_raw_socket, 276
basic_socket, 331
basic_socket_streambuf, 395
basic_stream_socket, 441
datagram_socket_service, 505
raw_socket_service, 695
stream_socket_service, 797

reserve
basic_streambuf, 454

reset
io_service, 525
windows::overlapped_ptr, 838

resize
ip::basic_endpoint, 563
local::basic_endpoint, 630

resolve
ip::basic_resolver, 568
ip::resolver_service, 596

resolver
ip::icmp, 582
ip::tcp, 604
ip::udp, 615

resolver_iterator
ip::icmp, 583
ip::tcp, 605
ip::udp, 617

resolver_query
ip::icmp, 583
ip::tcp, 606
ip::udp, 617

resolver_service
ip::resolver_service, 596

reuse_address
basic_datagram_socket, 213
basic_raw_socket, 277
basic_socket, 332
basic_socket_acceptor, 362
basic_socket_streambuf, 396
basic_stream_socket, 442
socket_base, 745

run

887

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service, 525
run_one

io_service, 526

S
scope_id

ip::address_v6, 555
send

basic_datagram_socket, 214
basic_raw_socket, 278
basic_stream_socket, 442
datagram_socket_service, 505
raw_socket_service, 695
stream_socket_service, 797

send_break
basic_serial_port, 299
serial_port_service, 731

send_buffer_size
basic_datagram_socket, 216
basic_raw_socket, 280
basic_socket, 332
basic_socket_acceptor, 362
basic_socket_streambuf, 397
basic_stream_socket, 445
socket_base, 745

send_low_watermark
basic_datagram_socket, 216
basic_raw_socket, 280
basic_socket, 333
basic_socket_acceptor, 363
basic_socket_streambuf, 397
basic_stream_socket, 445
socket_base, 746

send_to
basic_datagram_socket, 217
basic_raw_socket, 281
datagram_socket_service, 505
raw_socket_service, 695

serial_port, 719
serial_port_service

serial_port_service, 731
service

basic_datagram_socket, 219
basic_deadline_timer, 231
basic_io_object, 233
basic_raw_socket, 283
basic_serial_port, 300
basic_socket, 333
basic_socket_acceptor, 363
basic_socket_streambuf, 398
basic_stream_socket, 446
io_service::service, 530
ip::basic_resolver, 570
posix::basic_descriptor, 664
posix::basic_stream_descriptor, 678
windows::basic_handle, 811
windows::basic_random_access_handle, 822

888

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle, 835
service_already_exists

service_already_exists, 732
service_name

ip::basic_resolver_entry, 572
ip::basic_resolver_query, 578

service_type
basic_datagram_socket, 219
basic_deadline_timer, 231
basic_io_object, 233
basic_raw_socket, 283
basic_serial_port, 300
basic_socket, 333
basic_socket_acceptor, 363
basic_socket_streambuf, 398
basic_stream_socket, 446
ip::basic_resolver, 570
posix::basic_descriptor, 665
posix::basic_stream_descriptor, 678
ssl::basic_context, 752
ssl::stream, 780
windows::basic_handle, 811
windows::basic_random_access_handle, 822
windows::basic_stream_handle, 835

setbuf
basic_socket_streambuf, 399

set_option
basic_datagram_socket, 219
basic_raw_socket, 283
basic_serial_port, 300
basic_socket, 334
basic_socket_acceptor, 364
basic_socket_streambuf, 398
basic_stream_socket, 446
datagram_socket_service, 506
raw_socket_service, 696
serial_port_service, 731
socket_acceptor_service, 738
stream_socket_service, 797

set_options
ssl::basic_context, 753
ssl::context_service, 769

set_password_callback
ssl::basic_context, 753
ssl::context_service, 769

set_verify_mode
ssl::basic_context, 755
ssl::context_service, 769

shutdown
basic_datagram_socket, 220
basic_raw_socket, 284
basic_socket, 335
basic_socket_streambuf, 399
basic_stream_socket, 447
datagram_socket_service, 506
raw_socket_service, 696
ssl::stream, 781
ssl::stream_service, 788

889

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service, 798
shutdown_service

datagram_socket_service, 506
deadline_timer_service, 513
ip::resolver_service, 596
posix::stream_descriptor_service, 686
raw_socket_service, 696
serial_port_service, 732
socket_acceptor_service, 738
ssl::context_service, 770
ssl::stream_service, 789
stream_socket_service, 798
windows::random_access_handle_service, 844
windows::stream_handle_service, 850

shutdown_type
basic_datagram_socket, 222
basic_raw_socket, 285
basic_socket, 336
basic_socket_acceptor, 365
basic_socket_streambuf, 401
basic_stream_socket, 448
socket_base, 746

single_dh_use
ssl::basic_context, 756
ssl::context_base, 766

size
basic_streambuf, 454
ip::basic_endpoint, 563
local::basic_endpoint, 630

socket
ip::icmp, 584
ip::tcp, 607
ip::udp, 618
local::datagram_protocol, 633
local::stream_protocol, 643

socket_acceptor_service
socket_acceptor_service, 738

ssl::context, 761
stop

io_service, 527
stop_bits

serial_port_base::stop_bits, 727
store

serial_port_base::baud_rate, 722
serial_port_base::character_size, 723
serial_port_base::flow_control, 724
serial_port_base::parity, 725
serial_port_base::stop_bits, 727

strand, 789
io_service::strand, 532

stream
ssl::stream, 781

streambuf, 798
stream_descriptor_service

posix::stream_descriptor_service, 686
stream_handle_service

windows::stream_handle_service, 850
stream_service

890

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream_service, 789
stream_socket_service

stream_socket_service, 798
subtract

time_traits< boost::posix_time::ptime >, 801
sync

basic_socket_streambuf, 401

T
time_type

basic_deadline_timer, 231
deadline_timer_service, 513
time_traits< boost::posix_time::ptime >, 801

to_bytes
ip::address_v4, 547
ip::address_v6, 556

to_posix_duration
time_traits< boost::posix_time::ptime >, 802

to_string
ip::address, 539
ip::address_v4, 547
ip::address_v6, 556

to_ulong
ip::address_v4, 547

to_v4
ip::address, 540
ip::address_v6, 556

to_v6
ip::address, 540

traits_type
basic_deadline_timer, 231
deadline_timer_service, 513

transfer_all, 802
transfer_at_least, 802
type

ip::icmp, 588
ip::tcp, 611
ip::udp, 622
local::datagram_protocol, 637
local::stream_protocol, 647
serial_port_base::flow_control, 724
serial_port_base::parity, 725
serial_port_base::stop_bits, 727

U
underflow

basic_socket_streambuf, 401
basic_streambuf, 454

use_certificate_chain_file
ssl::basic_context, 756
ssl::context_service, 770

use_certificate_file
ssl::basic_context, 756
ssl::context_service, 770

use_private_key_file
ssl::basic_context, 757
ssl::context_service, 770

891

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

use_rsa_private_key_file
ssl::basic_context, 758
ssl::context_service, 770

use_service, 803
io_service, 527

use_tmp_dh_file
ssl::basic_context, 759
ssl::context_service, 770

V
v4

ip::icmp, 588
ip::tcp, 611
ip::udp, 622

v4_compatible
ip::address_v6, 556

v4_mapped
ip::address_v6, 556
ip::basic_resolver_query, 578
ip::resolver_query_base, 592

v6
ip::icmp, 589
ip::tcp, 612
ip::udp, 623

value
boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >, 864
boost::system::is_error_code_enum< boost::asio::error::basic_errors >, 864
boost::system::is_error_code_enum< boost::asio::error::misc_errors >, 865
boost::system::is_error_code_enum< boost::asio::error::netdb_errors >, 865
boost::system::is_error_code_enum< boost::asio::error::ssl_errors >, 865
is_match_condition, 624
is_read_buffered, 624
is_write_buffered, 625
serial_port_base::baud_rate, 722
serial_port_base::character_size, 723
serial_port_base::flow_control, 724
serial_port_base::parity, 726
serial_port_base::stop_bits, 727

value_type
const_buffers_1, 497
mutable_buffers_1, 652
null_buffers, 654

verify_client_once
ssl::basic_context, 760
ssl::context_base, 766

verify_fail_if_no_peer_cert
ssl::basic_context, 760
ssl::context_base, 766

verify_mode
ssl::basic_context, 761
ssl::context_base, 766

verify_none
ssl::basic_context, 761
ssl::context_base, 766

verify_peer
ssl::basic_context, 761
ssl::context_base, 766

892

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

W
wait

basic_deadline_timer, 231
deadline_timer_service, 514

windows::random_access_handle, 839
windows::stream_handle, 844
work

io_service::work, 534
wrap

io_service, 527
io_service::strand, 532

write, 850
write_at, 857
write_some

basic_serial_port, 301
basic_stream_socket, 449
buffered_read_stream, 473
buffered_stream, 482
buffered_write_stream, 490
posix::basic_stream_descriptor, 678
posix::stream_descriptor_service, 686
serial_port_service, 732
ssl::stream, 782
ssl::stream_service, 789
windows::basic_stream_handle, 835
windows::stream_handle_service, 850

write_some_at
windows::basic_random_access_handle, 823
windows::random_access_handle_service, 844

893

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Asio
	Overview
	Rationale
	Core Concepts and Functionality
	Basic Boost.Asio Anatomy
	The Proactor Design Pattern: Concurrency Without Threads
	Threads and Boost.Asio
	Strands: Use Threads Without Explicit Locking
	Buffers
	Streams, Short Reads and Short Writes
	Reactor-Style Operations
	Line-Based Operations
	Custom Memory Allocation

	Networking
	TCP, UDP and ICMP
	Socket Iostreams
	The BSD Socket API and Boost.Asio

	Timers
	Serial Ports
	POSIX-Specific Functionality
	UNIX Domain Sockets
	Stream-Oriented File Descriptors

	Windows-Specific Functionality
	Stream-Oriented HANDLEs
	Random-Access HANDLEs

	SSL
	Platform-Specific Implementation Notes

	Using Boost.Asio
	Tutorial
	Timer.1 - Using a timer synchronously
	Source listing for Timer.1

	Timer.2 - Using a timer asynchronously
	Source listing for Timer.2

	Timer.3 - Binding arguments to a handler
	Source listing for Timer.3

	Timer.4 - Using a member function as a handler
	Source listing for Timer.4

	Timer.5 - Synchronising handlers in multithreaded programs
	Source listing for Timer.5

	Daytime.1 - A synchronous TCP daytime client
	Source listing for Daytime.1

	Daytime.2 - A synchronous TCP daytime server
	Source listing for Daytime.2

	Daytime.3 - An asynchronous TCP daytime server
	Source listing for Daytime.3

	Daytime.4 - A synchronous UDP daytime client
	Source listing for Daytime.4

	Daytime.5 - A synchronous UDP daytime server
	Source listing for Daytime.5

	Daytime.6 - An asynchronous UDP daytime server
	Source listing for Daytime.6

	Daytime.7 - A combined TCP/UDP asynchronous server
	Source listing for Daytime.7

	Examples
	Reference
	Requirements on asynchronous operations
	Accept handler requirements
	Buffer-oriented asynchronous random-access read device requirements
	Buffer-oriented asynchronous random-access write device requirements
	Buffer-oriented asynchronous read stream requirements
	Buffer-oriented asynchronous write stream requirements
	Completion handler requirements
	Connect handler requirements
	Constant buffer sequence requirements
	Convertible to const buffer requirements
	Convertible to mutable buffer requirements
	Datagram socket service requirements
	Descriptor service requirements
	Endpoint requirements
	Gettable serial port option requirements
	Gettable socket option requirements
	Handlers
	Handle service requirements
	Internet protocol requirements
	I/O control command requirements
	I/O object service requirements
	Mutable buffer sequence requirements
	Protocol requirements
	Random access handle service requirements
	Raw socket service requirements
	Read handler requirements
	Resolve handler requirements
	Resolver service requirements
	Serial port service requirements
	Service requirements
	Settable serial port option requirements
	Settable socket option requirements
	Socket acceptor service requirements
	Socket service requirements
	Stream descriptor service requirements
	Stream handle service requirements
	Stream socket service requirements
	Buffer-oriented synchronous random-access read device requirements
	Buffer-oriented synchronous random-access write device requirements
	Buffer-oriented synchronous read stream requirements
	Buffer-oriented synchronous write stream requirements
	Time traits requirements
	Timer service requirements
	Wait handler requirements
	Write handler requirements
	add_service
	asio_handler_allocate
	asio_handler_deallocate
	asio_handler_invoke
	async_read
	async_read (1 of 4 overloads)
	async_read (2 of 4 overloads)
	async_read (3 of 4 overloads)
	async_read (4 of 4 overloads)

	async_read_at
	async_read_at (1 of 4 overloads)
	async_read_at (2 of 4 overloads)
	async_read_at (3 of 4 overloads)
	async_read_at (4 of 4 overloads)

	async_read_until
	async_read_until (1 of 4 overloads)
	async_read_until (2 of 4 overloads)
	async_read_until (3 of 4 overloads)
	async_read_until (4 of 4 overloads)

	async_write
	async_write (1 of 4 overloads)
	async_write (2 of 4 overloads)
	async_write (3 of 4 overloads)
	async_write (4 of 4 overloads)

	async_write_at
	async_write_at (1 of 4 overloads)
	async_write_at (2 of 4 overloads)
	async_write_at (3 of 4 overloads)
	async_write_at (4 of 4 overloads)

	basic_datagram_socket
	basic_datagram_socket::assign
	basic_datagram_socket::assign (1 of 2 overloads)
	basic_datagram_socket::assign (2 of 2 overloads)

	basic_datagram_socket::async_connect
	basic_datagram_socket::async_receive
	basic_datagram_socket::async_receive (1 of 2 overloads)
	basic_datagram_socket::async_receive (2 of 2 overloads)

	basic_datagram_socket::async_receive_from
	basic_datagram_socket::async_receive_from (1 of 2 overloads)
	basic_datagram_socket::async_receive_from (2 of 2 overloads)

	basic_datagram_socket::async_send
	basic_datagram_socket::async_send (1 of 2 overloads)
	basic_datagram_socket::async_send (2 of 2 overloads)

	basic_datagram_socket::async_send_to
	basic_datagram_socket::async_send_to (1 of 2 overloads)
	basic_datagram_socket::async_send_to (2 of 2 overloads)

	basic_datagram_socket::at_mark
	basic_datagram_socket::at_mark (1 of 2 overloads)
	basic_datagram_socket::at_mark (2 of 2 overloads)

	basic_datagram_socket::available
	basic_datagram_socket::available (1 of 2 overloads)
	basic_datagram_socket::available (2 of 2 overloads)

	basic_datagram_socket::basic_datagram_socket
	basic_datagram_socket::basic_datagram_socket (1 of 4 overloads)
	basic_datagram_socket::basic_datagram_socket (2 of 4 overloads)
	basic_datagram_socket::basic_datagram_socket (3 of 4 overloads)
	basic_datagram_socket::basic_datagram_socket (4 of 4 overloads)

	basic_datagram_socket::bind
	basic_datagram_socket::bind (1 of 2 overloads)
	basic_datagram_socket::bind (2 of 2 overloads)

	basic_datagram_socket::broadcast
	basic_datagram_socket::bytes_readable
	basic_datagram_socket::cancel
	basic_datagram_socket::cancel (1 of 2 overloads)
	basic_datagram_socket::cancel (2 of 2 overloads)

	basic_datagram_socket::close
	basic_datagram_socket::close (1 of 2 overloads)
	basic_datagram_socket::close (2 of 2 overloads)

	basic_datagram_socket::connect
	basic_datagram_socket::connect (1 of 2 overloads)
	basic_datagram_socket::connect (2 of 2 overloads)

	basic_datagram_socket::debug
	basic_datagram_socket::do_not_route
	basic_datagram_socket::enable_connection_aborted
	basic_datagram_socket::endpoint_type
	basic_datagram_socket::get_io_service
	basic_datagram_socket::get_option
	basic_datagram_socket::get_option (1 of 2 overloads)
	basic_datagram_socket::get_option (2 of 2 overloads)

	basic_datagram_socket::implementation
	basic_datagram_socket::implementation_type
	basic_datagram_socket::io_control
	basic_datagram_socket::io_control (1 of 2 overloads)
	basic_datagram_socket::io_control (2 of 2 overloads)

	basic_datagram_socket::io_service
	basic_datagram_socket::is_open
	basic_datagram_socket::keep_alive
	basic_datagram_socket::linger
	basic_datagram_socket::local_endpoint
	basic_datagram_socket::local_endpoint (1 of 2 overloads)
	basic_datagram_socket::local_endpoint (2 of 2 overloads)

	basic_datagram_socket::lowest_layer
	basic_datagram_socket::lowest_layer (1 of 2 overloads)
	basic_datagram_socket::lowest_layer (2 of 2 overloads)

	basic_datagram_socket::lowest_layer_type
	basic_datagram_socket::max_connections
	basic_datagram_socket::message_do_not_route
	basic_datagram_socket::message_flags
	basic_datagram_socket::message_out_of_band
	basic_datagram_socket::message_peek
	basic_datagram_socket::native
	basic_datagram_socket::native_type
	basic_datagram_socket::non_blocking_io
	basic_datagram_socket::open
	basic_datagram_socket::open (1 of 2 overloads)
	basic_datagram_socket::open (2 of 2 overloads)

	basic_datagram_socket::protocol_type
	basic_datagram_socket::receive
	basic_datagram_socket::receive (1 of 3 overloads)
	basic_datagram_socket::receive (2 of 3 overloads)
	basic_datagram_socket::receive (3 of 3 overloads)

	basic_datagram_socket::receive_buffer_size
	basic_datagram_socket::receive_from
	basic_datagram_socket::receive_from (1 of 3 overloads)
	basic_datagram_socket::receive_from (2 of 3 overloads)
	basic_datagram_socket::receive_from (3 of 3 overloads)

	basic_datagram_socket::receive_low_watermark
	basic_datagram_socket::remote_endpoint
	basic_datagram_socket::remote_endpoint (1 of 2 overloads)
	basic_datagram_socket::remote_endpoint (2 of 2 overloads)

	basic_datagram_socket::reuse_address
	basic_datagram_socket::send
	basic_datagram_socket::send (1 of 3 overloads)
	basic_datagram_socket::send (2 of 3 overloads)
	basic_datagram_socket::send (3 of 3 overloads)

	basic_datagram_socket::send_buffer_size
	basic_datagram_socket::send_low_watermark
	basic_datagram_socket::send_to
	basic_datagram_socket::send_to (1 of 3 overloads)
	basic_datagram_socket::send_to (2 of 3 overloads)
	basic_datagram_socket::send_to (3 of 3 overloads)

	basic_datagram_socket::service
	basic_datagram_socket::service_type
	basic_datagram_socket::set_option
	basic_datagram_socket::set_option (1 of 2 overloads)
	basic_datagram_socket::set_option (2 of 2 overloads)

	basic_datagram_socket::shutdown
	basic_datagram_socket::shutdown (1 of 2 overloads)
	basic_datagram_socket::shutdown (2 of 2 overloads)

	basic_datagram_socket::shutdown_type

	basic_deadline_timer
	basic_deadline_timer::async_wait
	basic_deadline_timer::basic_deadline_timer
	basic_deadline_timer::basic_deadline_timer (1 of 3 overloads)
	basic_deadline_timer::basic_deadline_timer (2 of 3 overloads)
	basic_deadline_timer::basic_deadline_timer (3 of 3 overloads)

	basic_deadline_timer::cancel
	basic_deadline_timer::cancel (1 of 2 overloads)
	basic_deadline_timer::cancel (2 of 2 overloads)

	basic_deadline_timer::duration_type
	basic_deadline_timer::expires_at
	basic_deadline_timer::expires_at (1 of 3 overloads)
	basic_deadline_timer::expires_at (2 of 3 overloads)
	basic_deadline_timer::expires_at (3 of 3 overloads)

	basic_deadline_timer::expires_from_now
	basic_deadline_timer::expires_from_now (1 of 3 overloads)
	basic_deadline_timer::expires_from_now (2 of 3 overloads)
	basic_deadline_timer::expires_from_now (3 of 3 overloads)

	basic_deadline_timer::get_io_service
	basic_deadline_timer::implementation
	basic_deadline_timer::implementation_type
	basic_deadline_timer::io_service
	basic_deadline_timer::service
	basic_deadline_timer::service_type
	basic_deadline_timer::time_type
	basic_deadline_timer::traits_type
	basic_deadline_timer::wait
	basic_deadline_timer::wait (1 of 2 overloads)
	basic_deadline_timer::wait (2 of 2 overloads)

	basic_io_object
	basic_io_object::basic_io_object
	basic_io_object::get_io_service
	basic_io_object::implementation
	basic_io_object::implementation_type
	basic_io_object::io_service
	basic_io_object::service
	basic_io_object::service_type
	basic_io_object::~basic_io_object

	basic_raw_socket
	basic_raw_socket::assign
	basic_raw_socket::assign (1 of 2 overloads)
	basic_raw_socket::assign (2 of 2 overloads)

	basic_raw_socket::async_connect
	basic_raw_socket::async_receive
	basic_raw_socket::async_receive (1 of 2 overloads)
	basic_raw_socket::async_receive (2 of 2 overloads)

	basic_raw_socket::async_receive_from
	basic_raw_socket::async_receive_from (1 of 2 overloads)
	basic_raw_socket::async_receive_from (2 of 2 overloads)

	basic_raw_socket::async_send
	basic_raw_socket::async_send (1 of 2 overloads)
	basic_raw_socket::async_send (2 of 2 overloads)

	basic_raw_socket::async_send_to
	basic_raw_socket::async_send_to (1 of 2 overloads)
	basic_raw_socket::async_send_to (2 of 2 overloads)

	basic_raw_socket::at_mark
	basic_raw_socket::at_mark (1 of 2 overloads)
	basic_raw_socket::at_mark (2 of 2 overloads)

	basic_raw_socket::available
	basic_raw_socket::available (1 of 2 overloads)
	basic_raw_socket::available (2 of 2 overloads)

	basic_raw_socket::basic_raw_socket
	basic_raw_socket::basic_raw_socket (1 of 4 overloads)
	basic_raw_socket::basic_raw_socket (2 of 4 overloads)
	basic_raw_socket::basic_raw_socket (3 of 4 overloads)
	basic_raw_socket::basic_raw_socket (4 of 4 overloads)

	basic_raw_socket::bind
	basic_raw_socket::bind (1 of 2 overloads)
	basic_raw_socket::bind (2 of 2 overloads)

	basic_raw_socket::broadcast
	basic_raw_socket::bytes_readable
	basic_raw_socket::cancel
	basic_raw_socket::cancel (1 of 2 overloads)
	basic_raw_socket::cancel (2 of 2 overloads)

	basic_raw_socket::close
	basic_raw_socket::close (1 of 2 overloads)
	basic_raw_socket::close (2 of 2 overloads)

	basic_raw_socket::connect
	basic_raw_socket::connect (1 of 2 overloads)
	basic_raw_socket::connect (2 of 2 overloads)

	basic_raw_socket::debug
	basic_raw_socket::do_not_route
	basic_raw_socket::enable_connection_aborted
	basic_raw_socket::endpoint_type
	basic_raw_socket::get_io_service
	basic_raw_socket::get_option
	basic_raw_socket::get_option (1 of 2 overloads)
	basic_raw_socket::get_option (2 of 2 overloads)

	basic_raw_socket::implementation
	basic_raw_socket::implementation_type
	basic_raw_socket::io_control
	basic_raw_socket::io_control (1 of 2 overloads)
	basic_raw_socket::io_control (2 of 2 overloads)

	basic_raw_socket::io_service
	basic_raw_socket::is_open
	basic_raw_socket::keep_alive
	basic_raw_socket::linger
	basic_raw_socket::local_endpoint
	basic_raw_socket::local_endpoint (1 of 2 overloads)
	basic_raw_socket::local_endpoint (2 of 2 overloads)

	basic_raw_socket::lowest_layer
	basic_raw_socket::lowest_layer (1 of 2 overloads)
	basic_raw_socket::lowest_layer (2 of 2 overloads)

	basic_raw_socket::lowest_layer_type
	basic_raw_socket::max_connections
	basic_raw_socket::message_do_not_route
	basic_raw_socket::message_flags
	basic_raw_socket::message_out_of_band
	basic_raw_socket::message_peek
	basic_raw_socket::native
	basic_raw_socket::native_type
	basic_raw_socket::non_blocking_io
	basic_raw_socket::open
	basic_raw_socket::open (1 of 2 overloads)
	basic_raw_socket::open (2 of 2 overloads)

	basic_raw_socket::protocol_type
	basic_raw_socket::receive
	basic_raw_socket::receive (1 of 3 overloads)
	basic_raw_socket::receive (2 of 3 overloads)
	basic_raw_socket::receive (3 of 3 overloads)

	basic_raw_socket::receive_buffer_size
	basic_raw_socket::receive_from
	basic_raw_socket::receive_from (1 of 3 overloads)
	basic_raw_socket::receive_from (2 of 3 overloads)
	basic_raw_socket::receive_from (3 of 3 overloads)

	basic_raw_socket::receive_low_watermark
	basic_raw_socket::remote_endpoint
	basic_raw_socket::remote_endpoint (1 of 2 overloads)
	basic_raw_socket::remote_endpoint (2 of 2 overloads)

	basic_raw_socket::reuse_address
	basic_raw_socket::send
	basic_raw_socket::send (1 of 3 overloads)
	basic_raw_socket::send (2 of 3 overloads)
	basic_raw_socket::send (3 of 3 overloads)

	basic_raw_socket::send_buffer_size
	basic_raw_socket::send_low_watermark
	basic_raw_socket::send_to
	basic_raw_socket::send_to (1 of 3 overloads)
	basic_raw_socket::send_to (2 of 3 overloads)
	basic_raw_socket::send_to (3 of 3 overloads)

	basic_raw_socket::service
	basic_raw_socket::service_type
	basic_raw_socket::set_option
	basic_raw_socket::set_option (1 of 2 overloads)
	basic_raw_socket::set_option (2 of 2 overloads)

	basic_raw_socket::shutdown
	basic_raw_socket::shutdown (1 of 2 overloads)
	basic_raw_socket::shutdown (2 of 2 overloads)

	basic_raw_socket::shutdown_type

	basic_serial_port
	basic_serial_port::assign
	basic_serial_port::assign (1 of 2 overloads)
	basic_serial_port::assign (2 of 2 overloads)

	basic_serial_port::async_read_some
	basic_serial_port::async_write_some
	basic_serial_port::basic_serial_port
	basic_serial_port::basic_serial_port (1 of 4 overloads)
	basic_serial_port::basic_serial_port (2 of 4 overloads)
	basic_serial_port::basic_serial_port (3 of 4 overloads)
	basic_serial_port::basic_serial_port (4 of 4 overloads)

	basic_serial_port::cancel
	basic_serial_port::cancel (1 of 2 overloads)
	basic_serial_port::cancel (2 of 2 overloads)

	basic_serial_port::close
	basic_serial_port::close (1 of 2 overloads)
	basic_serial_port::close (2 of 2 overloads)

	basic_serial_port::get_io_service
	basic_serial_port::get_option
	basic_serial_port::get_option (1 of 2 overloads)
	basic_serial_port::get_option (2 of 2 overloads)

	basic_serial_port::implementation
	basic_serial_port::implementation_type
	basic_serial_port::io_service
	basic_serial_port::is_open
	basic_serial_port::lowest_layer
	basic_serial_port::lowest_layer (1 of 2 overloads)
	basic_serial_port::lowest_layer (2 of 2 overloads)

	basic_serial_port::lowest_layer_type
	basic_serial_port::native
	basic_serial_port::native_type
	basic_serial_port::open
	basic_serial_port::open (1 of 2 overloads)
	basic_serial_port::open (2 of 2 overloads)

	basic_serial_port::read_some
	basic_serial_port::read_some (1 of 2 overloads)
	basic_serial_port::read_some (2 of 2 overloads)

	basic_serial_port::send_break
	basic_serial_port::send_break (1 of 2 overloads)
	basic_serial_port::send_break (2 of 2 overloads)

	basic_serial_port::service
	basic_serial_port::service_type
	basic_serial_port::set_option
	basic_serial_port::set_option (1 of 2 overloads)
	basic_serial_port::set_option (2 of 2 overloads)

	basic_serial_port::write_some
	basic_serial_port::write_some (1 of 2 overloads)
	basic_serial_port::write_some (2 of 2 overloads)

	basic_socket
	basic_socket::assign
	basic_socket::assign (1 of 2 overloads)
	basic_socket::assign (2 of 2 overloads)

	basic_socket::async_connect
	basic_socket::at_mark
	basic_socket::at_mark (1 of 2 overloads)
	basic_socket::at_mark (2 of 2 overloads)

	basic_socket::available
	basic_socket::available (1 of 2 overloads)
	basic_socket::available (2 of 2 overloads)

	basic_socket::basic_socket
	basic_socket::basic_socket (1 of 4 overloads)
	basic_socket::basic_socket (2 of 4 overloads)
	basic_socket::basic_socket (3 of 4 overloads)
	basic_socket::basic_socket (4 of 4 overloads)

	basic_socket::bind
	basic_socket::bind (1 of 2 overloads)
	basic_socket::bind (2 of 2 overloads)

	basic_socket::broadcast
	basic_socket::bytes_readable
	basic_socket::cancel
	basic_socket::cancel (1 of 2 overloads)
	basic_socket::cancel (2 of 2 overloads)

	basic_socket::close
	basic_socket::close (1 of 2 overloads)
	basic_socket::close (2 of 2 overloads)

	basic_socket::connect
	basic_socket::connect (1 of 2 overloads)
	basic_socket::connect (2 of 2 overloads)

	basic_socket::debug
	basic_socket::do_not_route
	basic_socket::enable_connection_aborted
	basic_socket::endpoint_type
	basic_socket::get_io_service
	basic_socket::get_option
	basic_socket::get_option (1 of 2 overloads)
	basic_socket::get_option (2 of 2 overloads)

	basic_socket::implementation
	basic_socket::implementation_type
	basic_socket::io_control
	basic_socket::io_control (1 of 2 overloads)
	basic_socket::io_control (2 of 2 overloads)

	basic_socket::io_service
	basic_socket::is_open
	basic_socket::keep_alive
	basic_socket::linger
	basic_socket::local_endpoint
	basic_socket::local_endpoint (1 of 2 overloads)
	basic_socket::local_endpoint (2 of 2 overloads)

	basic_socket::lowest_layer
	basic_socket::lowest_layer (1 of 2 overloads)
	basic_socket::lowest_layer (2 of 2 overloads)

	basic_socket::lowest_layer_type
	basic_socket::max_connections
	basic_socket::message_do_not_route
	basic_socket::message_flags
	basic_socket::message_out_of_band
	basic_socket::message_peek
	basic_socket::native
	basic_socket::native_type
	basic_socket::non_blocking_io
	basic_socket::open
	basic_socket::open (1 of 2 overloads)
	basic_socket::open (2 of 2 overloads)

	basic_socket::protocol_type
	basic_socket::receive_buffer_size
	basic_socket::receive_low_watermark
	basic_socket::remote_endpoint
	basic_socket::remote_endpoint (1 of 2 overloads)
	basic_socket::remote_endpoint (2 of 2 overloads)

	basic_socket::reuse_address
	basic_socket::send_buffer_size
	basic_socket::send_low_watermark
	basic_socket::service
	basic_socket::service_type
	basic_socket::set_option
	basic_socket::set_option (1 of 2 overloads)
	basic_socket::set_option (2 of 2 overloads)

	basic_socket::shutdown
	basic_socket::shutdown (1 of 2 overloads)
	basic_socket::shutdown (2 of 2 overloads)

	basic_socket::shutdown_type
	basic_socket::~basic_socket

	basic_socket_acceptor
	basic_socket_acceptor::accept
	basic_socket_acceptor::accept (1 of 4 overloads)
	basic_socket_acceptor::accept (2 of 4 overloads)
	basic_socket_acceptor::accept (3 of 4 overloads)
	basic_socket_acceptor::accept (4 of 4 overloads)

	basic_socket_acceptor::assign
	basic_socket_acceptor::assign (1 of 2 overloads)
	basic_socket_acceptor::assign (2 of 2 overloads)

	basic_socket_acceptor::async_accept
	basic_socket_acceptor::async_accept (1 of 2 overloads)
	basic_socket_acceptor::async_accept (2 of 2 overloads)

	basic_socket_acceptor::basic_socket_acceptor
	basic_socket_acceptor::basic_socket_acceptor (1 of 4 overloads)
	basic_socket_acceptor::basic_socket_acceptor (2 of 4 overloads)
	basic_socket_acceptor::basic_socket_acceptor (3 of 4 overloads)
	basic_socket_acceptor::basic_socket_acceptor (4 of 4 overloads)

	basic_socket_acceptor::bind
	basic_socket_acceptor::bind (1 of 2 overloads)
	basic_socket_acceptor::bind (2 of 2 overloads)

	basic_socket_acceptor::broadcast
	basic_socket_acceptor::bytes_readable
	basic_socket_acceptor::cancel
	basic_socket_acceptor::cancel (1 of 2 overloads)
	basic_socket_acceptor::cancel (2 of 2 overloads)

	basic_socket_acceptor::close
	basic_socket_acceptor::close (1 of 2 overloads)
	basic_socket_acceptor::close (2 of 2 overloads)

	basic_socket_acceptor::debug
	basic_socket_acceptor::do_not_route
	basic_socket_acceptor::enable_connection_aborted
	basic_socket_acceptor::endpoint_type
	basic_socket_acceptor::get_io_service
	basic_socket_acceptor::get_option
	basic_socket_acceptor::get_option (1 of 2 overloads)
	basic_socket_acceptor::get_option (2 of 2 overloads)

	basic_socket_acceptor::implementation
	basic_socket_acceptor::implementation_type
	basic_socket_acceptor::io_service
	basic_socket_acceptor::is_open
	basic_socket_acceptor::keep_alive
	basic_socket_acceptor::linger
	basic_socket_acceptor::listen
	basic_socket_acceptor::listen (1 of 2 overloads)
	basic_socket_acceptor::listen (2 of 2 overloads)

	basic_socket_acceptor::local_endpoint
	basic_socket_acceptor::local_endpoint (1 of 2 overloads)
	basic_socket_acceptor::local_endpoint (2 of 2 overloads)

	basic_socket_acceptor::max_connections
	basic_socket_acceptor::message_do_not_route
	basic_socket_acceptor::message_flags
	basic_socket_acceptor::message_out_of_band
	basic_socket_acceptor::message_peek
	basic_socket_acceptor::native
	basic_socket_acceptor::native_type
	basic_socket_acceptor::non_blocking_io
	basic_socket_acceptor::open
	basic_socket_acceptor::open (1 of 2 overloads)
	basic_socket_acceptor::open (2 of 2 overloads)

	basic_socket_acceptor::protocol_type
	basic_socket_acceptor::receive_buffer_size
	basic_socket_acceptor::receive_low_watermark
	basic_socket_acceptor::reuse_address
	basic_socket_acceptor::send_buffer_size
	basic_socket_acceptor::send_low_watermark
	basic_socket_acceptor::service
	basic_socket_acceptor::service_type
	basic_socket_acceptor::set_option
	basic_socket_acceptor::set_option (1 of 2 overloads)
	basic_socket_acceptor::set_option (2 of 2 overloads)

	basic_socket_acceptor::shutdown_type

	basic_socket_iostream
	basic_socket_iostream::basic_socket_iostream
	basic_socket_iostream::basic_socket_iostream (1 of 2 overloads)
	basic_socket_iostream::basic_socket_iostream (2 of 2 overloads)

	basic_socket_iostream::close
	basic_socket_iostream::connect
	basic_socket_iostream::rdbuf

	basic_socket_streambuf
	basic_socket_streambuf::assign
	basic_socket_streambuf::assign (1 of 2 overloads)
	basic_socket_streambuf::assign (2 of 2 overloads)

	basic_socket_streambuf::async_connect
	basic_socket_streambuf::at_mark
	basic_socket_streambuf::at_mark (1 of 2 overloads)
	basic_socket_streambuf::at_mark (2 of 2 overloads)

	basic_socket_streambuf::available
	basic_socket_streambuf::available (1 of 2 overloads)
	basic_socket_streambuf::available (2 of 2 overloads)

	basic_socket_streambuf::basic_socket_streambuf
	basic_socket_streambuf::bind
	basic_socket_streambuf::bind (1 of 2 overloads)
	basic_socket_streambuf::bind (2 of 2 overloads)

	basic_socket_streambuf::broadcast
	basic_socket_streambuf::bytes_readable
	basic_socket_streambuf::cancel
	basic_socket_streambuf::cancel (1 of 2 overloads)
	basic_socket_streambuf::cancel (2 of 2 overloads)

	basic_socket_streambuf::close
	basic_socket_streambuf::close (1 of 2 overloads)
	basic_socket_streambuf::close (2 of 2 overloads)

	basic_socket_streambuf::connect
	basic_socket_streambuf::connect (1 of 3 overloads)
	basic_socket_streambuf::connect (2 of 3 overloads)
	basic_socket_streambuf::connect (3 of 3 overloads)

	basic_socket_streambuf::debug
	basic_socket_streambuf::do_not_route
	basic_socket_streambuf::enable_connection_aborted
	basic_socket_streambuf::endpoint_type
	basic_socket_streambuf::get_io_service
	basic_socket_streambuf::get_option
	basic_socket_streambuf::get_option (1 of 2 overloads)
	basic_socket_streambuf::get_option (2 of 2 overloads)

	basic_socket_streambuf::implementation
	basic_socket_streambuf::implementation_type
	basic_socket_streambuf::io_control
	basic_socket_streambuf::io_control (1 of 2 overloads)
	basic_socket_streambuf::io_control (2 of 2 overloads)

	basic_socket_streambuf::io_service
	basic_socket_streambuf::is_open
	basic_socket_streambuf::keep_alive
	basic_socket_streambuf::linger
	basic_socket_streambuf::local_endpoint
	basic_socket_streambuf::local_endpoint (1 of 2 overloads)
	basic_socket_streambuf::local_endpoint (2 of 2 overloads)

	basic_socket_streambuf::lowest_layer
	basic_socket_streambuf::lowest_layer (1 of 2 overloads)
	basic_socket_streambuf::lowest_layer (2 of 2 overloads)

	basic_socket_streambuf::lowest_layer_type
	basic_socket_streambuf::max_connections
	basic_socket_streambuf::message_do_not_route
	basic_socket_streambuf::message_flags
	basic_socket_streambuf::message_out_of_band
	basic_socket_streambuf::message_peek
	basic_socket_streambuf::native
	basic_socket_streambuf::native_type
	basic_socket_streambuf::non_blocking_io
	basic_socket_streambuf::open
	basic_socket_streambuf::open (1 of 2 overloads)
	basic_socket_streambuf::open (2 of 2 overloads)

	basic_socket_streambuf::overflow
	basic_socket_streambuf::protocol_type
	basic_socket_streambuf::receive_buffer_size
	basic_socket_streambuf::receive_low_watermark
	basic_socket_streambuf::remote_endpoint
	basic_socket_streambuf::remote_endpoint (1 of 2 overloads)
	basic_socket_streambuf::remote_endpoint (2 of 2 overloads)

	basic_socket_streambuf::reuse_address
	basic_socket_streambuf::send_buffer_size
	basic_socket_streambuf::send_low_watermark
	basic_socket_streambuf::service
	basic_socket_streambuf::service_type
	basic_socket_streambuf::set_option
	basic_socket_streambuf::set_option (1 of 2 overloads)
	basic_socket_streambuf::set_option (2 of 2 overloads)

	basic_socket_streambuf::setbuf
	basic_socket_streambuf::shutdown
	basic_socket_streambuf::shutdown (1 of 2 overloads)
	basic_socket_streambuf::shutdown (2 of 2 overloads)

	basic_socket_streambuf::shutdown_type
	basic_socket_streambuf::sync
	basic_socket_streambuf::underflow
	basic_socket_streambuf::~basic_socket_streambuf

	basic_stream_socket
	basic_stream_socket::assign
	basic_stream_socket::assign (1 of 2 overloads)
	basic_stream_socket::assign (2 of 2 overloads)

	basic_stream_socket::async_connect
	basic_stream_socket::async_read_some
	basic_stream_socket::async_receive
	basic_stream_socket::async_receive (1 of 2 overloads)
	basic_stream_socket::async_receive (2 of 2 overloads)

	basic_stream_socket::async_send
	basic_stream_socket::async_send (1 of 2 overloads)
	basic_stream_socket::async_send (2 of 2 overloads)

	basic_stream_socket::async_write_some
	basic_stream_socket::at_mark
	basic_stream_socket::at_mark (1 of 2 overloads)
	basic_stream_socket::at_mark (2 of 2 overloads)

	basic_stream_socket::available
	basic_stream_socket::available (1 of 2 overloads)
	basic_stream_socket::available (2 of 2 overloads)

	basic_stream_socket::basic_stream_socket
	basic_stream_socket::basic_stream_socket (1 of 4 overloads)
	basic_stream_socket::basic_stream_socket (2 of 4 overloads)
	basic_stream_socket::basic_stream_socket (3 of 4 overloads)
	basic_stream_socket::basic_stream_socket (4 of 4 overloads)

	basic_stream_socket::bind
	basic_stream_socket::bind (1 of 2 overloads)
	basic_stream_socket::bind (2 of 2 overloads)

	basic_stream_socket::broadcast
	basic_stream_socket::bytes_readable
	basic_stream_socket::cancel
	basic_stream_socket::cancel (1 of 2 overloads)
	basic_stream_socket::cancel (2 of 2 overloads)

	basic_stream_socket::close
	basic_stream_socket::close (1 of 2 overloads)
	basic_stream_socket::close (2 of 2 overloads)

	basic_stream_socket::connect
	basic_stream_socket::connect (1 of 2 overloads)
	basic_stream_socket::connect (2 of 2 overloads)

	basic_stream_socket::debug
	basic_stream_socket::do_not_route
	basic_stream_socket::enable_connection_aborted
	basic_stream_socket::endpoint_type
	basic_stream_socket::get_io_service
	basic_stream_socket::get_option
	basic_stream_socket::get_option (1 of 2 overloads)
	basic_stream_socket::get_option (2 of 2 overloads)

	basic_stream_socket::implementation
	basic_stream_socket::implementation_type
	basic_stream_socket::io_control
	basic_stream_socket::io_control (1 of 2 overloads)
	basic_stream_socket::io_control (2 of 2 overloads)

	basic_stream_socket::io_service
	basic_stream_socket::is_open
	basic_stream_socket::keep_alive
	basic_stream_socket::linger
	basic_stream_socket::local_endpoint
	basic_stream_socket::local_endpoint (1 of 2 overloads)
	basic_stream_socket::local_endpoint (2 of 2 overloads)

	basic_stream_socket::lowest_layer
	basic_stream_socket::lowest_layer (1 of 2 overloads)
	basic_stream_socket::lowest_layer (2 of 2 overloads)

	basic_stream_socket::lowest_layer_type
	basic_stream_socket::max_connections
	basic_stream_socket::message_do_not_route
	basic_stream_socket::message_flags
	basic_stream_socket::message_out_of_band
	basic_stream_socket::message_peek
	basic_stream_socket::native
	basic_stream_socket::native_type
	basic_stream_socket::non_blocking_io
	basic_stream_socket::open
	basic_stream_socket::open (1 of 2 overloads)
	basic_stream_socket::open (2 of 2 overloads)

	basic_stream_socket::protocol_type
	basic_stream_socket::read_some
	basic_stream_socket::read_some (1 of 2 overloads)
	basic_stream_socket::read_some (2 of 2 overloads)

	basic_stream_socket::receive
	basic_stream_socket::receive (1 of 3 overloads)
	basic_stream_socket::receive (2 of 3 overloads)
	basic_stream_socket::receive (3 of 3 overloads)

	basic_stream_socket::receive_buffer_size
	basic_stream_socket::receive_low_watermark
	basic_stream_socket::remote_endpoint
	basic_stream_socket::remote_endpoint (1 of 2 overloads)
	basic_stream_socket::remote_endpoint (2 of 2 overloads)

	basic_stream_socket::reuse_address
	basic_stream_socket::send
	basic_stream_socket::send (1 of 3 overloads)
	basic_stream_socket::send (2 of 3 overloads)
	basic_stream_socket::send (3 of 3 overloads)

	basic_stream_socket::send_buffer_size
	basic_stream_socket::send_low_watermark
	basic_stream_socket::service
	basic_stream_socket::service_type
	basic_stream_socket::set_option
	basic_stream_socket::set_option (1 of 2 overloads)
	basic_stream_socket::set_option (2 of 2 overloads)

	basic_stream_socket::shutdown
	basic_stream_socket::shutdown (1 of 2 overloads)
	basic_stream_socket::shutdown (2 of 2 overloads)

	basic_stream_socket::shutdown_type
	basic_stream_socket::write_some
	basic_stream_socket::write_some (1 of 2 overloads)
	basic_stream_socket::write_some (2 of 2 overloads)

	basic_streambuf
	basic_streambuf::basic_streambuf
	basic_streambuf::commit
	basic_streambuf::const_buffers_type
	basic_streambuf::consume
	basic_streambuf::data
	basic_streambuf::max_size
	basic_streambuf::mutable_buffers_type
	basic_streambuf::overflow
	basic_streambuf::prepare
	basic_streambuf::reserve
	basic_streambuf::size
	basic_streambuf::underflow

	buffer
	buffer (1 of 22 overloads)
	buffer (2 of 22 overloads)
	buffer (3 of 22 overloads)
	buffer (4 of 22 overloads)
	buffer (5 of 22 overloads)
	buffer (6 of 22 overloads)
	buffer (7 of 22 overloads)
	buffer (8 of 22 overloads)
	buffer (9 of 22 overloads)
	buffer (10 of 22 overloads)
	buffer (11 of 22 overloads)
	buffer (12 of 22 overloads)
	buffer (13 of 22 overloads)
	buffer (14 of 22 overloads)
	buffer (15 of 22 overloads)
	buffer (16 of 22 overloads)
	buffer (17 of 22 overloads)
	buffer (18 of 22 overloads)
	buffer (19 of 22 overloads)
	buffer (20 of 22 overloads)
	buffer (21 of 22 overloads)
	buffer (22 of 22 overloads)

	buffered_read_stream
	buffered_read_stream::async_fill
	buffered_read_stream::async_read_some
	buffered_read_stream::async_write_some
	buffered_read_stream::buffered_read_stream
	buffered_read_stream::buffered_read_stream (1 of 2 overloads)
	buffered_read_stream::buffered_read_stream (2 of 2 overloads)

	buffered_read_stream::close
	buffered_read_stream::close (1 of 2 overloads)
	buffered_read_stream::close (2 of 2 overloads)

	buffered_read_stream::default_buffer_size
	buffered_read_stream::fill
	buffered_read_stream::fill (1 of 2 overloads)
	buffered_read_stream::fill (2 of 2 overloads)

	buffered_read_stream::get_io_service
	buffered_read_stream::in_avail
	buffered_read_stream::in_avail (1 of 2 overloads)
	buffered_read_stream::in_avail (2 of 2 overloads)

	buffered_read_stream::io_service
	buffered_read_stream::lowest_layer
	buffered_read_stream::lowest_layer (1 of 2 overloads)
	buffered_read_stream::lowest_layer (2 of 2 overloads)

	buffered_read_stream::lowest_layer_type
	buffered_read_stream::next_layer
	buffered_read_stream::next_layer_type
	buffered_read_stream::peek
	buffered_read_stream::peek (1 of 2 overloads)
	buffered_read_stream::peek (2 of 2 overloads)

	buffered_read_stream::read_some
	buffered_read_stream::read_some (1 of 2 overloads)
	buffered_read_stream::read_some (2 of 2 overloads)

	buffered_read_stream::write_some
	buffered_read_stream::write_some (1 of 2 overloads)
	buffered_read_stream::write_some (2 of 2 overloads)

	buffered_stream
	buffered_stream::async_fill
	buffered_stream::async_flush
	buffered_stream::async_read_some
	buffered_stream::async_write_some
	buffered_stream::buffered_stream
	buffered_stream::buffered_stream (1 of 2 overloads)
	buffered_stream::buffered_stream (2 of 2 overloads)

	buffered_stream::close
	buffered_stream::close (1 of 2 overloads)
	buffered_stream::close (2 of 2 overloads)

	buffered_stream::fill
	buffered_stream::fill (1 of 2 overloads)
	buffered_stream::fill (2 of 2 overloads)

	buffered_stream::flush
	buffered_stream::flush (1 of 2 overloads)
	buffered_stream::flush (2 of 2 overloads)

	buffered_stream::get_io_service
	buffered_stream::in_avail
	buffered_stream::in_avail (1 of 2 overloads)
	buffered_stream::in_avail (2 of 2 overloads)

	buffered_stream::io_service
	buffered_stream::lowest_layer
	buffered_stream::lowest_layer (1 of 2 overloads)
	buffered_stream::lowest_layer (2 of 2 overloads)

	buffered_stream::lowest_layer_type
	buffered_stream::next_layer
	buffered_stream::next_layer_type
	buffered_stream::peek
	buffered_stream::peek (1 of 2 overloads)
	buffered_stream::peek (2 of 2 overloads)

	buffered_stream::read_some
	buffered_stream::read_some (1 of 2 overloads)
	buffered_stream::read_some (2 of 2 overloads)

	buffered_stream::write_some
	buffered_stream::write_some (1 of 2 overloads)
	buffered_stream::write_some (2 of 2 overloads)

	buffered_write_stream
	buffered_write_stream::async_flush
	buffered_write_stream::async_read_some
	buffered_write_stream::async_write_some
	buffered_write_stream::buffered_write_stream
	buffered_write_stream::buffered_write_stream (1 of 2 overloads)
	buffered_write_stream::buffered_write_stream (2 of 2 overloads)

	buffered_write_stream::close
	buffered_write_stream::close (1 of 2 overloads)
	buffered_write_stream::close (2 of 2 overloads)

	buffered_write_stream::default_buffer_size
	buffered_write_stream::flush
	buffered_write_stream::flush (1 of 2 overloads)
	buffered_write_stream::flush (2 of 2 overloads)

	buffered_write_stream::get_io_service
	buffered_write_stream::in_avail
	buffered_write_stream::in_avail (1 of 2 overloads)
	buffered_write_stream::in_avail (2 of 2 overloads)

	buffered_write_stream::io_service
	buffered_write_stream::lowest_layer
	buffered_write_stream::lowest_layer (1 of 2 overloads)
	buffered_write_stream::lowest_layer (2 of 2 overloads)

	buffered_write_stream::lowest_layer_type
	buffered_write_stream::next_layer
	buffered_write_stream::next_layer_type
	buffered_write_stream::peek
	buffered_write_stream::peek (1 of 2 overloads)
	buffered_write_stream::peek (2 of 2 overloads)

	buffered_write_stream::read_some
	buffered_write_stream::read_some (1 of 2 overloads)
	buffered_write_stream::read_some (2 of 2 overloads)

	buffered_write_stream::write_some
	buffered_write_stream::write_some (1 of 2 overloads)
	buffered_write_stream::write_some (2 of 2 overloads)

	buffers_begin
	buffers_end
	buffers_iterator
	buffers_iterator::begin
	buffers_iterator::buffers_iterator
	buffers_iterator::end

	const_buffer
	const_buffer::buffer_cast
	const_buffer::buffer_size
	const_buffer::const_buffer
	const_buffer::const_buffer (1 of 3 overloads)
	const_buffer::const_buffer (2 of 3 overloads)
	const_buffer::const_buffer (3 of 3 overloads)

	const_buffer::operator+
	const_buffer::operator+ (1 of 2 overloads)
	const_buffer::operator+ (2 of 2 overloads)

	const_buffers_1
	const_buffers_1::begin
	const_buffers_1::buffer_cast
	const_buffers_1::buffer_size
	const_buffers_1::const_buffers_1
	const_buffers_1::const_buffers_1 (1 of 2 overloads)
	const_buffers_1::const_buffers_1 (2 of 2 overloads)

	const_buffers_1::const_iterator
	const_buffers_1::end
	const_buffers_1::operator+
	const_buffers_1::operator+ (1 of 2 overloads)
	const_buffers_1::operator+ (2 of 2 overloads)

	const_buffers_1::value_type

	datagram_socket_service
	datagram_socket_service::assign
	datagram_socket_service::async_connect
	datagram_socket_service::async_receive
	datagram_socket_service::async_receive_from
	datagram_socket_service::async_send
	datagram_socket_service::async_send_to
	datagram_socket_service::at_mark
	datagram_socket_service::available
	datagram_socket_service::bind
	datagram_socket_service::cancel
	datagram_socket_service::close
	datagram_socket_service::connect
	datagram_socket_service::construct
	datagram_socket_service::datagram_socket_service
	datagram_socket_service::destroy
	datagram_socket_service::endpoint_type
	datagram_socket_service::get_io_service
	datagram_socket_service::get_option
	datagram_socket_service::id
	datagram_socket_service::implementation_type
	datagram_socket_service::io_control
	datagram_socket_service::io_service
	datagram_socket_service::is_open
	datagram_socket_service::local_endpoint
	datagram_socket_service::native
	datagram_socket_service::native_type
	datagram_socket_service::open
	datagram_socket_service::protocol_type
	datagram_socket_service::receive
	datagram_socket_service::receive_from
	datagram_socket_service::remote_endpoint
	datagram_socket_service::send
	datagram_socket_service::send_to
	datagram_socket_service::set_option
	datagram_socket_service::shutdown
	datagram_socket_service::shutdown_service

	deadline_timer
	deadline_timer_service
	deadline_timer_service::async_wait
	deadline_timer_service::cancel
	deadline_timer_service::construct
	deadline_timer_service::deadline_timer_service
	deadline_timer_service::destroy
	deadline_timer_service::duration_type
	deadline_timer_service::expires_at
	deadline_timer_service::expires_at (1 of 2 overloads)
	deadline_timer_service::expires_at (2 of 2 overloads)

	deadline_timer_service::expires_from_now
	deadline_timer_service::expires_from_now (1 of 2 overloads)
	deadline_timer_service::expires_from_now (2 of 2 overloads)

	deadline_timer_service::get_io_service
	deadline_timer_service::id
	deadline_timer_service::implementation_type
	deadline_timer_service::io_service
	deadline_timer_service::shutdown_service
	deadline_timer_service::time_type
	deadline_timer_service::traits_type
	deadline_timer_service::wait

	error::addrinfo_category
	error::addrinfo_errors
	error::basic_errors
	error::get_addrinfo_category
	error::get_misc_category
	error::get_netdb_category
	error::get_ssl_category
	error::get_system_category
	error::make_error_code
	error::make_error_code (1 of 5 overloads)
	error::make_error_code (2 of 5 overloads)
	error::make_error_code (3 of 5 overloads)
	error::make_error_code (4 of 5 overloads)
	error::make_error_code (5 of 5 overloads)

	error::misc_category
	error::misc_errors
	error::netdb_category
	error::netdb_errors
	error::ssl_category
	error::ssl_errors
	error::system_category
	has_service
	invalid_service_owner
	invalid_service_owner::invalid_service_owner

	io_service
	io_service::add_service
	io_service::dispatch
	io_service::has_service
	io_service::io_service
	io_service::io_service (1 of 2 overloads)
	io_service::io_service (2 of 2 overloads)

	io_service::poll
	io_service::poll (1 of 2 overloads)
	io_service::poll (2 of 2 overloads)

	io_service::poll_one
	io_service::poll_one (1 of 2 overloads)
	io_service::poll_one (2 of 2 overloads)

	io_service::post
	io_service::reset
	io_service::run
	io_service::run (1 of 2 overloads)
	io_service::run (2 of 2 overloads)

	io_service::run_one
	io_service::run_one (1 of 2 overloads)
	io_service::run_one (2 of 2 overloads)

	io_service::stop
	io_service::use_service
	io_service::wrap
	io_service::~io_service

	io_service::id
	io_service::id::id

	io_service::service
	io_service::service::get_io_service
	io_service::service::io_service
	io_service::service::service
	io_service::service::~service

	io_service::strand
	io_service::strand::dispatch
	io_service::strand::get_io_service
	io_service::strand::io_service
	io_service::strand::post
	io_service::strand::strand
	io_service::strand::wrap
	io_service::strand::~strand

	io_service::work
	io_service::work::get_io_service
	io_service::work::io_service
	io_service::work::work
	io_service::work::work (1 of 2 overloads)
	io_service::work::work (2 of 2 overloads)

	io_service::work::~work

	ip::address
	ip::address::address
	ip::address::address (1 of 4 overloads)
	ip::address::address (2 of 4 overloads)
	ip::address::address (3 of 4 overloads)
	ip::address::address (4 of 4 overloads)

	ip::address::from_string
	ip::address::from_string (1 of 4 overloads)
	ip::address::from_string (2 of 4 overloads)
	ip::address::from_string (3 of 4 overloads)
	ip::address::from_string (4 of 4 overloads)

	ip::address::is_v4
	ip::address::is_v6
	ip::address::operator!=
	ip::address::operator<
	ip::address::operator<<
	ip::address::operator=
	ip::address::operator= (1 of 3 overloads)
	ip::address::operator= (2 of 3 overloads)
	ip::address::operator= (3 of 3 overloads)

	ip::address::operator==
	ip::address::to_string
	ip::address::to_string (1 of 2 overloads)
	ip::address::to_string (2 of 2 overloads)

	ip::address::to_v4
	ip::address::to_v6

	ip::address_v4
	ip::address_v4::address_v4
	ip::address_v4::address_v4 (1 of 4 overloads)
	ip::address_v4::address_v4 (2 of 4 overloads)
	ip::address_v4::address_v4 (3 of 4 overloads)
	ip::address_v4::address_v4 (4 of 4 overloads)

	ip::address_v4::any
	ip::address_v4::broadcast
	ip::address_v4::broadcast (1 of 2 overloads)
	ip::address_v4::broadcast (2 of 2 overloads)

	ip::address_v4::bytes_type
	ip::address_v4::from_string
	ip::address_v4::from_string (1 of 4 overloads)
	ip::address_v4::from_string (2 of 4 overloads)
	ip::address_v4::from_string (3 of 4 overloads)
	ip::address_v4::from_string (4 of 4 overloads)

	ip::address_v4::is_class_a
	ip::address_v4::is_class_b
	ip::address_v4::is_class_c
	ip::address_v4::is_multicast
	ip::address_v4::loopback
	ip::address_v4::netmask
	ip::address_v4::operator!=
	ip::address_v4::operator<
	ip::address_v4::operator<<
	ip::address_v4::operator<=
	ip::address_v4::operator=
	ip::address_v4::operator==
	ip::address_v4::operator>
	ip::address_v4::operator>=
	ip::address_v4::to_bytes
	ip::address_v4::to_string
	ip::address_v4::to_string (1 of 2 overloads)
	ip::address_v4::to_string (2 of 2 overloads)

	ip::address_v4::to_ulong

	ip::address_v6
	ip::address_v6::address_v6
	ip::address_v6::address_v6 (1 of 3 overloads)
	ip::address_v6::address_v6 (2 of 3 overloads)
	ip::address_v6::address_v6 (3 of 3 overloads)

	ip::address_v6::any
	ip::address_v6::bytes_type
	ip::address_v6::from_string
	ip::address_v6::from_string (1 of 4 overloads)
	ip::address_v6::from_string (2 of 4 overloads)
	ip::address_v6::from_string (3 of 4 overloads)
	ip::address_v6::from_string (4 of 4 overloads)

	ip::address_v6::is_link_local
	ip::address_v6::is_loopback
	ip::address_v6::is_multicast
	ip::address_v6::is_multicast_global
	ip::address_v6::is_multicast_link_local
	ip::address_v6::is_multicast_node_local
	ip::address_v6::is_multicast_org_local
	ip::address_v6::is_multicast_site_local
	ip::address_v6::is_site_local
	ip::address_v6::is_unspecified
	ip::address_v6::is_v4_compatible
	ip::address_v6::is_v4_mapped
	ip::address_v6::loopback
	ip::address_v6::operator!=
	ip::address_v6::operator<
	ip::address_v6::operator<<
	ip::address_v6::operator<=
	ip::address_v6::operator=
	ip::address_v6::operator==
	ip::address_v6::operator>
	ip::address_v6::operator>=
	ip::address_v6::scope_id
	ip::address_v6::scope_id (1 of 2 overloads)
	ip::address_v6::scope_id (2 of 2 overloads)

	ip::address_v6::to_bytes
	ip::address_v6::to_string
	ip::address_v6::to_string (1 of 2 overloads)
	ip::address_v6::to_string (2 of 2 overloads)

	ip::address_v6::to_v4
	ip::address_v6::v4_compatible
	ip::address_v6::v4_mapped

	ip::basic_endpoint
	ip::basic_endpoint::address
	ip::basic_endpoint::address (1 of 2 overloads)
	ip::basic_endpoint::address (2 of 2 overloads)

	ip::basic_endpoint::basic_endpoint
	ip::basic_endpoint::basic_endpoint (1 of 4 overloads)
	ip::basic_endpoint::basic_endpoint (2 of 4 overloads)
	ip::basic_endpoint::basic_endpoint (3 of 4 overloads)
	ip::basic_endpoint::basic_endpoint (4 of 4 overloads)

	ip::basic_endpoint::capacity
	ip::basic_endpoint::data
	ip::basic_endpoint::data (1 of 2 overloads)
	ip::basic_endpoint::data (2 of 2 overloads)

	ip::basic_endpoint::data_type
	ip::basic_endpoint::operator!=
	ip::basic_endpoint::operator<
	ip::basic_endpoint::operator<<
	ip::basic_endpoint::operator=
	ip::basic_endpoint::operator==
	ip::basic_endpoint::port
	ip::basic_endpoint::port (1 of 2 overloads)
	ip::basic_endpoint::port (2 of 2 overloads)

	ip::basic_endpoint::protocol
	ip::basic_endpoint::protocol_type
	ip::basic_endpoint::resize
	ip::basic_endpoint::size

	ip::basic_resolver
	ip::basic_resolver::async_resolve
	ip::basic_resolver::async_resolve (1 of 2 overloads)
	ip::basic_resolver::async_resolve (2 of 2 overloads)

	ip::basic_resolver::basic_resolver
	ip::basic_resolver::cancel
	ip::basic_resolver::endpoint_type
	ip::basic_resolver::get_io_service
	ip::basic_resolver::implementation
	ip::basic_resolver::implementation_type
	ip::basic_resolver::io_service
	ip::basic_resolver::iterator
	ip::basic_resolver::protocol_type
	ip::basic_resolver::query
	ip::basic_resolver::resolve
	ip::basic_resolver::resolve (1 of 4 overloads)
	ip::basic_resolver::resolve (2 of 4 overloads)
	ip::basic_resolver::resolve (3 of 4 overloads)
	ip::basic_resolver::resolve (4 of 4 overloads)

	ip::basic_resolver::service
	ip::basic_resolver::service_type

	ip::basic_resolver_entry
	ip::basic_resolver_entry::basic_resolver_entry
	ip::basic_resolver_entry::basic_resolver_entry (1 of 2 overloads)
	ip::basic_resolver_entry::basic_resolver_entry (2 of 2 overloads)

	ip::basic_resolver_entry::endpoint
	ip::basic_resolver_entry::endpoint_type
	ip::basic_resolver_entry::host_name
	ip::basic_resolver_entry::operator endpoint_type
	ip::basic_resolver_entry::protocol_type
	ip::basic_resolver_entry::service_name

	ip::basic_resolver_iterator
	ip::basic_resolver_iterator::basic_resolver_iterator
	ip::basic_resolver_iterator::create
	ip::basic_resolver_iterator::create (1 of 2 overloads)
	ip::basic_resolver_iterator::create (2 of 2 overloads)

	ip::basic_resolver_query
	ip::basic_resolver_query::address_configured
	ip::basic_resolver_query::all_matching
	ip::basic_resolver_query::basic_resolver_query
	ip::basic_resolver_query::basic_resolver_query (1 of 4 overloads)
	ip::basic_resolver_query::basic_resolver_query (2 of 4 overloads)
	ip::basic_resolver_query::basic_resolver_query (3 of 4 overloads)
	ip::basic_resolver_query::basic_resolver_query (4 of 4 overloads)

	ip::basic_resolver_query::canonical_name
	ip::basic_resolver_query::hints
	ip::basic_resolver_query::host_name
	ip::basic_resolver_query::numeric_host
	ip::basic_resolver_query::numeric_service
	ip::basic_resolver_query::passive
	ip::basic_resolver_query::protocol_type
	ip::basic_resolver_query::service_name
	ip::basic_resolver_query::v4_mapped

	ip::host_name
	ip::host_name (1 of 2 overloads)
	ip::host_name (2 of 2 overloads)

	ip::icmp
	ip::icmp::endpoint
	ip::icmp::family
	ip::icmp::operator!=
	ip::icmp::operator==
	ip::icmp::protocol
	ip::icmp::resolver
	ip::icmp::resolver_iterator
	ip::icmp::resolver_query
	ip::icmp::socket
	ip::icmp::type
	ip::icmp::v4
	ip::icmp::v6

	ip::multicast::enable_loopback
	ip::multicast::hops
	ip::multicast::join_group
	ip::multicast::leave_group
	ip::multicast::outbound_interface
	ip::resolver_query_base
	ip::resolver_query_base::address_configured
	ip::resolver_query_base::all_matching
	ip::resolver_query_base::canonical_name
	ip::resolver_query_base::numeric_host
	ip::resolver_query_base::numeric_service
	ip::resolver_query_base::passive
	ip::resolver_query_base::v4_mapped
	ip::resolver_query_base::~resolver_query_base

	ip::resolver_service
	ip::resolver_service::async_resolve
	ip::resolver_service::async_resolve (1 of 2 overloads)
	ip::resolver_service::async_resolve (2 of 2 overloads)

	ip::resolver_service::cancel
	ip::resolver_service::construct
	ip::resolver_service::destroy
	ip::resolver_service::endpoint_type
	ip::resolver_service::get_io_service
	ip::resolver_service::id
	ip::resolver_service::implementation_type
	ip::resolver_service::io_service
	ip::resolver_service::iterator_type
	ip::resolver_service::protocol_type
	ip::resolver_service::query_type
	ip::resolver_service::resolve
	ip::resolver_service::resolve (1 of 2 overloads)
	ip::resolver_service::resolve (2 of 2 overloads)

	ip::resolver_service::resolver_service
	ip::resolver_service::shutdown_service

	ip::tcp
	ip::tcp::acceptor
	ip::tcp::endpoint
	ip::tcp::family
	ip::tcp::iostream
	ip::tcp::no_delay
	ip::tcp::operator!=
	ip::tcp::operator==
	ip::tcp::protocol
	ip::tcp::resolver
	ip::tcp::resolver_iterator
	ip::tcp::resolver_query
	ip::tcp::socket
	ip::tcp::type
	ip::tcp::v4
	ip::tcp::v6

	ip::udp
	ip::udp::endpoint
	ip::udp::family
	ip::udp::operator!=
	ip::udp::operator==
	ip::udp::protocol
	ip::udp::resolver
	ip::udp::resolver_iterator
	ip::udp::resolver_query
	ip::udp::socket
	ip::udp::type
	ip::udp::v4
	ip::udp::v6

	ip::unicast::hops
	ip::v6_only
	is_match_condition
	is_match_condition::value

	is_read_buffered
	is_read_buffered::value

	is_write_buffered
	is_write_buffered::value

	local::basic_endpoint
	local::basic_endpoint::basic_endpoint
	local::basic_endpoint::basic_endpoint (1 of 4 overloads)
	local::basic_endpoint::basic_endpoint (2 of 4 overloads)
	local::basic_endpoint::basic_endpoint (3 of 4 overloads)
	local::basic_endpoint::basic_endpoint (4 of 4 overloads)

	local::basic_endpoint::capacity
	local::basic_endpoint::data
	local::basic_endpoint::data (1 of 2 overloads)
	local::basic_endpoint::data (2 of 2 overloads)

	local::basic_endpoint::data_type
	local::basic_endpoint::operator!=
	local::basic_endpoint::operator<
	local::basic_endpoint::operator<<
	local::basic_endpoint::operator=
	local::basic_endpoint::operator==
	local::basic_endpoint::path
	local::basic_endpoint::path (1 of 3 overloads)
	local::basic_endpoint::path (2 of 3 overloads)
	local::basic_endpoint::path (3 of 3 overloads)

	local::basic_endpoint::protocol
	local::basic_endpoint::protocol_type
	local::basic_endpoint::resize
	local::basic_endpoint::size

	local::connect_pair
	local::connect_pair (1 of 2 overloads)
	local::connect_pair (2 of 2 overloads)

	local::datagram_protocol
	local::datagram_protocol::endpoint
	local::datagram_protocol::family
	local::datagram_protocol::protocol
	local::datagram_protocol::socket
	local::datagram_protocol::type

	local::stream_protocol
	local::stream_protocol::acceptor
	local::stream_protocol::endpoint
	local::stream_protocol::family
	local::stream_protocol::iostream
	local::stream_protocol::protocol
	local::stream_protocol::socket
	local::stream_protocol::type

	mutable_buffer
	mutable_buffer::buffer_cast
	mutable_buffer::buffer_size
	mutable_buffer::mutable_buffer
	mutable_buffer::mutable_buffer (1 of 2 overloads)
	mutable_buffer::mutable_buffer (2 of 2 overloads)

	mutable_buffer::operator+
	mutable_buffer::operator+ (1 of 2 overloads)
	mutable_buffer::operator+ (2 of 2 overloads)

	mutable_buffers_1
	mutable_buffers_1::begin
	mutable_buffers_1::buffer_cast
	mutable_buffers_1::buffer_size
	mutable_buffers_1::const_iterator
	mutable_buffers_1::end
	mutable_buffers_1::mutable_buffers_1
	mutable_buffers_1::mutable_buffers_1 (1 of 2 overloads)
	mutable_buffers_1::mutable_buffers_1 (2 of 2 overloads)

	mutable_buffers_1::operator+
	mutable_buffers_1::operator+ (1 of 2 overloads)
	mutable_buffers_1::operator+ (2 of 2 overloads)

	mutable_buffers_1::value_type

	null_buffers
	null_buffers::begin
	null_buffers::const_iterator
	null_buffers::end
	null_buffers::value_type

	placeholders::bytes_transferred
	placeholders::error
	placeholders::iterator
	posix::basic_descriptor
	posix::basic_descriptor::assign
	posix::basic_descriptor::assign (1 of 2 overloads)
	posix::basic_descriptor::assign (2 of 2 overloads)

	posix::basic_descriptor::basic_descriptor
	posix::basic_descriptor::basic_descriptor (1 of 2 overloads)
	posix::basic_descriptor::basic_descriptor (2 of 2 overloads)

	posix::basic_descriptor::bytes_readable
	posix::basic_descriptor::cancel
	posix::basic_descriptor::cancel (1 of 2 overloads)
	posix::basic_descriptor::cancel (2 of 2 overloads)

	posix::basic_descriptor::close
	posix::basic_descriptor::close (1 of 2 overloads)
	posix::basic_descriptor::close (2 of 2 overloads)

	posix::basic_descriptor::get_io_service
	posix::basic_descriptor::implementation
	posix::basic_descriptor::implementation_type
	posix::basic_descriptor::io_control
	posix::basic_descriptor::io_control (1 of 2 overloads)
	posix::basic_descriptor::io_control (2 of 2 overloads)

	posix::basic_descriptor::io_service
	posix::basic_descriptor::is_open
	posix::basic_descriptor::lowest_layer
	posix::basic_descriptor::lowest_layer (1 of 2 overloads)
	posix::basic_descriptor::lowest_layer (2 of 2 overloads)

	posix::basic_descriptor::lowest_layer_type
	posix::basic_descriptor::native
	posix::basic_descriptor::native_type
	posix::basic_descriptor::non_blocking_io
	posix::basic_descriptor::service
	posix::basic_descriptor::service_type
	posix::basic_descriptor::~basic_descriptor

	posix::basic_stream_descriptor
	posix::basic_stream_descriptor::assign
	posix::basic_stream_descriptor::assign (1 of 2 overloads)
	posix::basic_stream_descriptor::assign (2 of 2 overloads)

	posix::basic_stream_descriptor::async_read_some
	posix::basic_stream_descriptor::async_write_some
	posix::basic_stream_descriptor::basic_stream_descriptor
	posix::basic_stream_descriptor::basic_stream_descriptor (1 of 2 overloads)
	posix::basic_stream_descriptor::basic_stream_descriptor (2 of 2 overloads)

	posix::basic_stream_descriptor::bytes_readable
	posix::basic_stream_descriptor::cancel
	posix::basic_stream_descriptor::cancel (1 of 2 overloads)
	posix::basic_stream_descriptor::cancel (2 of 2 overloads)

	posix::basic_stream_descriptor::close
	posix::basic_stream_descriptor::close (1 of 2 overloads)
	posix::basic_stream_descriptor::close (2 of 2 overloads)

	posix::basic_stream_descriptor::get_io_service
	posix::basic_stream_descriptor::implementation
	posix::basic_stream_descriptor::implementation_type
	posix::basic_stream_descriptor::io_control
	posix::basic_stream_descriptor::io_control (1 of 2 overloads)
	posix::basic_stream_descriptor::io_control (2 of 2 overloads)

	posix::basic_stream_descriptor::io_service
	posix::basic_stream_descriptor::is_open
	posix::basic_stream_descriptor::lowest_layer
	posix::basic_stream_descriptor::lowest_layer (1 of 2 overloads)
	posix::basic_stream_descriptor::lowest_layer (2 of 2 overloads)

	posix::basic_stream_descriptor::lowest_layer_type
	posix::basic_stream_descriptor::native
	posix::basic_stream_descriptor::native_type
	posix::basic_stream_descriptor::non_blocking_io
	posix::basic_stream_descriptor::read_some
	posix::basic_stream_descriptor::read_some (1 of 2 overloads)
	posix::basic_stream_descriptor::read_some (2 of 2 overloads)

	posix::basic_stream_descriptor::service
	posix::basic_stream_descriptor::service_type
	posix::basic_stream_descriptor::write_some
	posix::basic_stream_descriptor::write_some (1 of 2 overloads)
	posix::basic_stream_descriptor::write_some (2 of 2 overloads)

	posix::descriptor_base
	posix::descriptor_base::bytes_readable
	posix::descriptor_base::non_blocking_io
	posix::descriptor_base::~descriptor_base

	posix::stream_descriptor
	posix::stream_descriptor_service
	posix::stream_descriptor_service::assign
	posix::stream_descriptor_service::async_read_some
	posix::stream_descriptor_service::async_write_some
	posix::stream_descriptor_service::cancel
	posix::stream_descriptor_service::close
	posix::stream_descriptor_service::construct
	posix::stream_descriptor_service::destroy
	posix::stream_descriptor_service::get_io_service
	posix::stream_descriptor_service::id
	posix::stream_descriptor_service::implementation_type
	posix::stream_descriptor_service::io_control
	posix::stream_descriptor_service::io_service
	posix::stream_descriptor_service::is_open
	posix::stream_descriptor_service::native
	posix::stream_descriptor_service::native_type
	posix::stream_descriptor_service::read_some
	posix::stream_descriptor_service::shutdown_service
	posix::stream_descriptor_service::stream_descriptor_service
	posix::stream_descriptor_service::write_some

	raw_socket_service
	raw_socket_service::assign
	raw_socket_service::async_connect
	raw_socket_service::async_receive
	raw_socket_service::async_receive_from
	raw_socket_service::async_send
	raw_socket_service::async_send_to
	raw_socket_service::at_mark
	raw_socket_service::available
	raw_socket_service::bind
	raw_socket_service::cancel
	raw_socket_service::close
	raw_socket_service::connect
	raw_socket_service::construct
	raw_socket_service::destroy
	raw_socket_service::endpoint_type
	raw_socket_service::get_io_service
	raw_socket_service::get_option
	raw_socket_service::id
	raw_socket_service::implementation_type
	raw_socket_service::io_control
	raw_socket_service::io_service
	raw_socket_service::is_open
	raw_socket_service::local_endpoint
	raw_socket_service::native
	raw_socket_service::native_type
	raw_socket_service::open
	raw_socket_service::protocol_type
	raw_socket_service::raw_socket_service
	raw_socket_service::receive
	raw_socket_service::receive_from
	raw_socket_service::remote_endpoint
	raw_socket_service::send
	raw_socket_service::send_to
	raw_socket_service::set_option
	raw_socket_service::shutdown
	raw_socket_service::shutdown_service

	read
	read (1 of 6 overloads)
	read (2 of 6 overloads)
	read (3 of 6 overloads)
	read (4 of 6 overloads)
	read (5 of 6 overloads)
	read (6 of 6 overloads)

	read_at
	read_at (1 of 6 overloads)
	read_at (2 of 6 overloads)
	read_at (3 of 6 overloads)
	read_at (4 of 6 overloads)
	read_at (5 of 6 overloads)
	read_at (6 of 6 overloads)

	read_until
	read_until (1 of 8 overloads)
	read_until (2 of 8 overloads)
	read_until (3 of 8 overloads)
	read_until (4 of 8 overloads)
	read_until (5 of 8 overloads)
	read_until (6 of 8 overloads)
	read_until (7 of 8 overloads)
	read_until (8 of 8 overloads)

	serial_port
	serial_port_base
	serial_port_base::~serial_port_base

	serial_port_base::baud_rate
	serial_port_base::baud_rate::baud_rate
	serial_port_base::baud_rate::load
	serial_port_base::baud_rate::store
	serial_port_base::baud_rate::value

	serial_port_base::character_size
	serial_port_base::character_size::character_size
	serial_port_base::character_size::load
	serial_port_base::character_size::store
	serial_port_base::character_size::value

	serial_port_base::flow_control
	serial_port_base::flow_control::flow_control
	serial_port_base::flow_control::load
	serial_port_base::flow_control::store
	serial_port_base::flow_control::type
	serial_port_base::flow_control::value

	serial_port_base::parity
	serial_port_base::parity::load
	serial_port_base::parity::parity
	serial_port_base::parity::store
	serial_port_base::parity::type
	serial_port_base::parity::value

	serial_port_base::stop_bits
	serial_port_base::stop_bits::load
	serial_port_base::stop_bits::stop_bits
	serial_port_base::stop_bits::store
	serial_port_base::stop_bits::type
	serial_port_base::stop_bits::value

	serial_port_service
	serial_port_service::assign
	serial_port_service::async_read_some
	serial_port_service::async_write_some
	serial_port_service::cancel
	serial_port_service::close
	serial_port_service::construct
	serial_port_service::destroy
	serial_port_service::get_io_service
	serial_port_service::get_option
	serial_port_service::id
	serial_port_service::implementation_type
	serial_port_service::io_service
	serial_port_service::is_open
	serial_port_service::native
	serial_port_service::native_type
	serial_port_service::open
	serial_port_service::read_some
	serial_port_service::send_break
	serial_port_service::serial_port_service
	serial_port_service::set_option
	serial_port_service::shutdown_service
	serial_port_service::write_some

	service_already_exists
	service_already_exists::service_already_exists

	socket_acceptor_service
	socket_acceptor_service::accept
	socket_acceptor_service::assign
	socket_acceptor_service::async_accept
	socket_acceptor_service::bind
	socket_acceptor_service::cancel
	socket_acceptor_service::close
	socket_acceptor_service::construct
	socket_acceptor_service::destroy
	socket_acceptor_service::endpoint_type
	socket_acceptor_service::get_io_service
	socket_acceptor_service::get_option
	socket_acceptor_service::id
	socket_acceptor_service::implementation_type
	socket_acceptor_service::io_control
	socket_acceptor_service::io_service
	socket_acceptor_service::is_open
	socket_acceptor_service::listen
	socket_acceptor_service::local_endpoint
	socket_acceptor_service::native
	socket_acceptor_service::native_type
	socket_acceptor_service::open
	socket_acceptor_service::protocol_type
	socket_acceptor_service::set_option
	socket_acceptor_service::shutdown_service
	socket_acceptor_service::socket_acceptor_service

	socket_base
	socket_base::broadcast
	socket_base::bytes_readable
	socket_base::debug
	socket_base::do_not_route
	socket_base::enable_connection_aborted
	socket_base::keep_alive
	socket_base::linger
	socket_base::max_connections
	socket_base::message_do_not_route
	socket_base::message_flags
	socket_base::message_out_of_band
	socket_base::message_peek
	socket_base::non_blocking_io
	socket_base::receive_buffer_size
	socket_base::receive_low_watermark
	socket_base::reuse_address
	socket_base::send_buffer_size
	socket_base::send_low_watermark
	socket_base::shutdown_type
	socket_base::~socket_base

	ssl::basic_context
	ssl::basic_context::add_verify_path
	ssl::basic_context::add_verify_path (1 of 2 overloads)
	ssl::basic_context::add_verify_path (2 of 2 overloads)

	ssl::basic_context::basic_context
	ssl::basic_context::default_workarounds
	ssl::basic_context::file_format
	ssl::basic_context::impl
	ssl::basic_context::impl_type
	ssl::basic_context::load_verify_file
	ssl::basic_context::load_verify_file (1 of 2 overloads)
	ssl::basic_context::load_verify_file (2 of 2 overloads)

	ssl::basic_context::method
	ssl::basic_context::no_sslv2
	ssl::basic_context::no_sslv3
	ssl::basic_context::no_tlsv1
	ssl::basic_context::options
	ssl::basic_context::password_purpose
	ssl::basic_context::service_type
	ssl::basic_context::set_options
	ssl::basic_context::set_options (1 of 2 overloads)
	ssl::basic_context::set_options (2 of 2 overloads)

	ssl::basic_context::set_password_callback
	ssl::basic_context::set_password_callback (1 of 2 overloads)
	ssl::basic_context::set_password_callback (2 of 2 overloads)

	ssl::basic_context::set_verify_mode
	ssl::basic_context::set_verify_mode (1 of 2 overloads)
	ssl::basic_context::set_verify_mode (2 of 2 overloads)

	ssl::basic_context::single_dh_use
	ssl::basic_context::use_certificate_chain_file
	ssl::basic_context::use_certificate_chain_file (1 of 2 overloads)
	ssl::basic_context::use_certificate_chain_file (2 of 2 overloads)

	ssl::basic_context::use_certificate_file
	ssl::basic_context::use_certificate_file (1 of 2 overloads)
	ssl::basic_context::use_certificate_file (2 of 2 overloads)

	ssl::basic_context::use_private_key_file
	ssl::basic_context::use_private_key_file (1 of 2 overloads)
	ssl::basic_context::use_private_key_file (2 of 2 overloads)

	ssl::basic_context::use_rsa_private_key_file
	ssl::basic_context::use_rsa_private_key_file (1 of 2 overloads)
	ssl::basic_context::use_rsa_private_key_file (2 of 2 overloads)

	ssl::basic_context::use_tmp_dh_file
	ssl::basic_context::use_tmp_dh_file (1 of 2 overloads)
	ssl::basic_context::use_tmp_dh_file (2 of 2 overloads)

	ssl::basic_context::verify_client_once
	ssl::basic_context::verify_fail_if_no_peer_cert
	ssl::basic_context::verify_mode
	ssl::basic_context::verify_none
	ssl::basic_context::verify_peer
	ssl::basic_context::~basic_context

	ssl::context
	ssl::context_base
	ssl::context_base::default_workarounds
	ssl::context_base::file_format
	ssl::context_base::method
	ssl::context_base::no_sslv2
	ssl::context_base::no_sslv3
	ssl::context_base::no_tlsv1
	ssl::context_base::options
	ssl::context_base::password_purpose
	ssl::context_base::single_dh_use
	ssl::context_base::verify_client_once
	ssl::context_base::verify_fail_if_no_peer_cert
	ssl::context_base::verify_mode
	ssl::context_base::verify_none
	ssl::context_base::verify_peer
	ssl::context_base::~context_base

	ssl::context_service
	ssl::context_service::add_verify_path
	ssl::context_service::context_service
	ssl::context_service::create
	ssl::context_service::destroy
	ssl::context_service::get_io_service
	ssl::context_service::id
	ssl::context_service::impl_type
	ssl::context_service::io_service
	ssl::context_service::load_verify_file
	ssl::context_service::null
	ssl::context_service::set_options
	ssl::context_service::set_password_callback
	ssl::context_service::set_verify_mode
	ssl::context_service::shutdown_service
	ssl::context_service::use_certificate_chain_file
	ssl::context_service::use_certificate_file
	ssl::context_service::use_private_key_file
	ssl::context_service::use_rsa_private_key_file
	ssl::context_service::use_tmp_dh_file

	ssl::stream
	ssl::stream::async_handshake
	ssl::stream::async_read_some
	ssl::stream::async_shutdown
	ssl::stream::async_write_some
	ssl::stream::get_io_service
	ssl::stream::handshake
	ssl::stream::handshake (1 of 2 overloads)
	ssl::stream::handshake (2 of 2 overloads)

	ssl::stream::handshake_type
	ssl::stream::impl
	ssl::stream::impl_type
	ssl::stream::in_avail
	ssl::stream::in_avail (1 of 2 overloads)
	ssl::stream::in_avail (2 of 2 overloads)

	ssl::stream::io_service
	ssl::stream::lowest_layer
	ssl::stream::lowest_layer (1 of 2 overloads)
	ssl::stream::lowest_layer (2 of 2 overloads)

	ssl::stream::lowest_layer_type
	ssl::stream::next_layer
	ssl::stream::next_layer_type
	ssl::stream::peek
	ssl::stream::peek (1 of 2 overloads)
	ssl::stream::peek (2 of 2 overloads)

	ssl::stream::read_some
	ssl::stream::read_some (1 of 2 overloads)
	ssl::stream::read_some (2 of 2 overloads)

	ssl::stream::service_type
	ssl::stream::shutdown
	ssl::stream::shutdown (1 of 2 overloads)
	ssl::stream::shutdown (2 of 2 overloads)

	ssl::stream::stream
	ssl::stream::write_some
	ssl::stream::write_some (1 of 2 overloads)
	ssl::stream::write_some (2 of 2 overloads)

	ssl::stream::~stream

	ssl::stream_base
	ssl::stream_base::handshake_type
	ssl::stream_base::~stream_base

	ssl::stream_service
	ssl::stream_service::async_handshake
	ssl::stream_service::async_read_some
	ssl::stream_service::async_shutdown
	ssl::stream_service::async_write_some
	ssl::stream_service::create
	ssl::stream_service::destroy
	ssl::stream_service::get_io_service
	ssl::stream_service::handshake
	ssl::stream_service::id
	ssl::stream_service::impl_type
	ssl::stream_service::in_avail
	ssl::stream_service::io_service
	ssl::stream_service::null
	ssl::stream_service::peek
	ssl::stream_service::read_some
	ssl::stream_service::shutdown
	ssl::stream_service::shutdown_service
	ssl::stream_service::stream_service
	ssl::stream_service::write_some

	strand
	stream_socket_service
	stream_socket_service::assign
	stream_socket_service::async_connect
	stream_socket_service::async_receive
	stream_socket_service::async_send
	stream_socket_service::at_mark
	stream_socket_service::available
	stream_socket_service::bind
	stream_socket_service::cancel
	stream_socket_service::close
	stream_socket_service::connect
	stream_socket_service::construct
	stream_socket_service::destroy
	stream_socket_service::endpoint_type
	stream_socket_service::get_io_service
	stream_socket_service::get_option
	stream_socket_service::id
	stream_socket_service::implementation_type
	stream_socket_service::io_control
	stream_socket_service::io_service
	stream_socket_service::is_open
	stream_socket_service::local_endpoint
	stream_socket_service::native
	stream_socket_service::native_type
	stream_socket_service::open
	stream_socket_service::protocol_type
	stream_socket_service::receive
	stream_socket_service::remote_endpoint
	stream_socket_service::send
	stream_socket_service::set_option
	stream_socket_service::shutdown
	stream_socket_service::shutdown_service
	stream_socket_service::stream_socket_service

	streambuf
	time_traits< boost::posix_time::ptime >
	time_traits< boost::posix_time::ptime >::add
	time_traits< boost::posix_time::ptime >::duration_type
	time_traits< boost::posix_time::ptime >::less_than
	time_traits< boost::posix_time::ptime >::now
	time_traits< boost::posix_time::ptime >::subtract
	time_traits< boost::posix_time::ptime >::time_type
	time_traits< boost::posix_time::ptime >::to_posix_duration

	transfer_all
	transfer_at_least
	use_service
	windows::basic_handle
	windows::basic_handle::assign
	windows::basic_handle::assign (1 of 2 overloads)
	windows::basic_handle::assign (2 of 2 overloads)

	windows::basic_handle::basic_handle
	windows::basic_handle::basic_handle (1 of 2 overloads)
	windows::basic_handle::basic_handle (2 of 2 overloads)

	windows::basic_handle::cancel
	windows::basic_handle::cancel (1 of 2 overloads)
	windows::basic_handle::cancel (2 of 2 overloads)

	windows::basic_handle::close
	windows::basic_handle::close (1 of 2 overloads)
	windows::basic_handle::close (2 of 2 overloads)

	windows::basic_handle::get_io_service
	windows::basic_handle::implementation
	windows::basic_handle::implementation_type
	windows::basic_handle::io_service
	windows::basic_handle::is_open
	windows::basic_handle::lowest_layer
	windows::basic_handle::lowest_layer (1 of 2 overloads)
	windows::basic_handle::lowest_layer (2 of 2 overloads)

	windows::basic_handle::lowest_layer_type
	windows::basic_handle::native
	windows::basic_handle::native_type
	windows::basic_handle::service
	windows::basic_handle::service_type
	windows::basic_handle::~basic_handle

	windows::basic_random_access_handle
	windows::basic_random_access_handle::assign
	windows::basic_random_access_handle::assign (1 of 2 overloads)
	windows::basic_random_access_handle::assign (2 of 2 overloads)

	windows::basic_random_access_handle::async_read_some_at
	windows::basic_random_access_handle::async_write_some_at
	windows::basic_random_access_handle::basic_random_access_handle
	windows::basic_random_access_handle::basic_random_access_handle (1 of 2 overloads)
	windows::basic_random_access_handle::basic_random_access_handle (2 of 2 overloads)

	windows::basic_random_access_handle::cancel
	windows::basic_random_access_handle::cancel (1 of 2 overloads)
	windows::basic_random_access_handle::cancel (2 of 2 overloads)

	windows::basic_random_access_handle::close
	windows::basic_random_access_handle::close (1 of 2 overloads)
	windows::basic_random_access_handle::close (2 of 2 overloads)

	windows::basic_random_access_handle::get_io_service
	windows::basic_random_access_handle::implementation
	windows::basic_random_access_handle::implementation_type
	windows::basic_random_access_handle::io_service
	windows::basic_random_access_handle::is_open
	windows::basic_random_access_handle::lowest_layer
	windows::basic_random_access_handle::lowest_layer (1 of 2 overloads)
	windows::basic_random_access_handle::lowest_layer (2 of 2 overloads)

	windows::basic_random_access_handle::lowest_layer_type
	windows::basic_random_access_handle::native
	windows::basic_random_access_handle::native_type
	windows::basic_random_access_handle::read_some_at
	windows::basic_random_access_handle::read_some_at (1 of 2 overloads)
	windows::basic_random_access_handle::read_some_at (2 of 2 overloads)

	windows::basic_random_access_handle::service
	windows::basic_random_access_handle::service_type
	windows::basic_random_access_handle::write_some_at
	windows::basic_random_access_handle::write_some_at (1 of 2 overloads)
	windows::basic_random_access_handle::write_some_at (2 of 2 overloads)

	windows::basic_stream_handle
	windows::basic_stream_handle::assign
	windows::basic_stream_handle::assign (1 of 2 overloads)
	windows::basic_stream_handle::assign (2 of 2 overloads)

	windows::basic_stream_handle::async_read_some
	windows::basic_stream_handle::async_write_some
	windows::basic_stream_handle::basic_stream_handle
	windows::basic_stream_handle::basic_stream_handle (1 of 2 overloads)
	windows::basic_stream_handle::basic_stream_handle (2 of 2 overloads)

	windows::basic_stream_handle::cancel
	windows::basic_stream_handle::cancel (1 of 2 overloads)
	windows::basic_stream_handle::cancel (2 of 2 overloads)

	windows::basic_stream_handle::close
	windows::basic_stream_handle::close (1 of 2 overloads)
	windows::basic_stream_handle::close (2 of 2 overloads)

	windows::basic_stream_handle::get_io_service
	windows::basic_stream_handle::implementation
	windows::basic_stream_handle::implementation_type
	windows::basic_stream_handle::io_service
	windows::basic_stream_handle::is_open
	windows::basic_stream_handle::lowest_layer
	windows::basic_stream_handle::lowest_layer (1 of 2 overloads)
	windows::basic_stream_handle::lowest_layer (2 of 2 overloads)

	windows::basic_stream_handle::lowest_layer_type
	windows::basic_stream_handle::native
	windows::basic_stream_handle::native_type
	windows::basic_stream_handle::read_some
	windows::basic_stream_handle::read_some (1 of 2 overloads)
	windows::basic_stream_handle::read_some (2 of 2 overloads)

	windows::basic_stream_handle::service
	windows::basic_stream_handle::service_type
	windows::basic_stream_handle::write_some
	windows::basic_stream_handle::write_some (1 of 2 overloads)
	windows::basic_stream_handle::write_some (2 of 2 overloads)

	windows::overlapped_ptr
	windows::overlapped_ptr::complete
	windows::overlapped_ptr::get
	windows::overlapped_ptr::get (1 of 2 overloads)
	windows::overlapped_ptr::get (2 of 2 overloads)

	windows::overlapped_ptr::overlapped_ptr
	windows::overlapped_ptr::overlapped_ptr (1 of 2 overloads)
	windows::overlapped_ptr::overlapped_ptr (2 of 2 overloads)

	windows::overlapped_ptr::release
	windows::overlapped_ptr::reset
	windows::overlapped_ptr::reset (1 of 2 overloads)
	windows::overlapped_ptr::reset (2 of 2 overloads)

	windows::overlapped_ptr::~overlapped_ptr

	windows::random_access_handle
	windows::random_access_handle_service
	windows::random_access_handle_service::assign
	windows::random_access_handle_service::async_read_some_at
	windows::random_access_handle_service::async_write_some_at
	windows::random_access_handle_service::cancel
	windows::random_access_handle_service::close
	windows::random_access_handle_service::construct
	windows::random_access_handle_service::destroy
	windows::random_access_handle_service::get_io_service
	windows::random_access_handle_service::id
	windows::random_access_handle_service::implementation_type
	windows::random_access_handle_service::io_service
	windows::random_access_handle_service::is_open
	windows::random_access_handle_service::native
	windows::random_access_handle_service::native_type
	windows::random_access_handle_service::random_access_handle_service
	windows::random_access_handle_service::read_some_at
	windows::random_access_handle_service::shutdown_service
	windows::random_access_handle_service::write_some_at

	windows::stream_handle
	windows::stream_handle_service
	windows::stream_handle_service::assign
	windows::stream_handle_service::async_read_some
	windows::stream_handle_service::async_write_some
	windows::stream_handle_service::cancel
	windows::stream_handle_service::close
	windows::stream_handle_service::construct
	windows::stream_handle_service::destroy
	windows::stream_handle_service::get_io_service
	windows::stream_handle_service::id
	windows::stream_handle_service::implementation_type
	windows::stream_handle_service::io_service
	windows::stream_handle_service::is_open
	windows::stream_handle_service::native
	windows::stream_handle_service::native_type
	windows::stream_handle_service::read_some
	windows::stream_handle_service::shutdown_service
	windows::stream_handle_service::stream_handle_service
	windows::stream_handle_service::write_some

	write
	write (1 of 6 overloads)
	write (2 of 6 overloads)
	write (3 of 6 overloads)
	write (4 of 6 overloads)
	write (5 of 6 overloads)
	write (6 of 6 overloads)

	write_at
	write_at (1 of 6 overloads)
	write_at (2 of 6 overloads)
	write_at (3 of 6 overloads)
	write_at (4 of 6 overloads)
	write_at (5 of 6 overloads)
	write_at (6 of 6 overloads)

	boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >
	boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::basic_errors >
	boost::system::is_error_code_enum< boost::asio::error::basic_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::misc_errors >
	boost::system::is_error_code_enum< boost::asio::error::misc_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::netdb_errors >
	boost::system::is_error_code_enum< boost::asio::error::netdb_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::ssl_errors >
	boost::system::is_error_code_enum< boost::asio::error::ssl_errors >::value

	
	Index

